The heterogeneous cell types of the cardiac conduction system are responsible for coordinating and maintaining rhythmic contractions of the heart. While it has been shown that the cells of the conduction system are derived from myocytes, additional cell types, including neural crest cells, may play a role in the development and maturation of these specialized cell lineages. Previous work has shown that the expression of the hf-1b gene is required for specification of the cardiac conduction system.
View Article and Find Full Text PDFThe interleukin-6 cytokines, acting via gp130 receptor pathways, play a pivotal role in the reduction of cardiac injury induced by mechanical stress or ischemia and in promoting subsequent adaptive remodeling of the heart. We have now identified the small proline-rich repeat proteins (SPRR) 1A and 2A as downstream targets of gp130 signaling that are strongly induced in cardiomyocytes responding to biomechanical/ischemic stress. Upregulation of SPRR1A and 2A was markedly reduced in the gp130 cardiomyocyte-restricted knockout mice.
View Article and Find Full Text PDFTo unravel the complex disease phenotype of heart failure, we are utilizing an integrative approach employing genomics, physiology, and mouse genetics to identify nodal pathways for specific physiological end points such as myocyte stretch activation responses, contractility and electrical conduction. A new class of genetic pathways for cardiac sudden death and associated arrhythmias has been based on transcription factors that control conduction system lineages, including HF1b/SP4 and NKX2.5.
View Article and Find Full Text PDF