Huntington disease (HD) is a fatal neurodegenerative disease with no effective treatment. In the R6/1 mouse model of HD, environmental enrichment delays the neurologic phenotype onset and prevents cerebral volume loss by unknown molecular mechanisms. We examined the effects of environmental enrichment on well-characterized neuropathological parameters in a mouse model of HD.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line), expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits.
View Article and Find Full Text PDFNeurodegenerative diseases such as Huntington's disease and Alzheimer's disease, although very different in etiology, share common degenerative processes. These include neuronal dysfunction, decreased neural connectivity, and disruption of cellular plasticity. Understanding the molecular mechanisms underlying the neural plasticity deficits in these devastating conditions may lead the way toward new therapeutic targets, both disease-specific and more generalized, which can ameliorate degenerative cognitive deficits.
View Article and Find Full Text PDFHyperphosphorylated forms of the microtubule-associated protein (MAP) tau accumulate in Alzheimer's disease and related tauopathies and are thought to have an important role in neurodegeneration. However, the mechanisms through which phosphorylated tau induces neurodegeneration have remained elusive. Here, we show that tau-induced neurodegeneration is associated with accumulation of filamentous actin (F-actin) and the formation of actin-rich rods in Drosophila and mouse models of tauopathy.
View Article and Find Full Text PDFNeurofibrillary tangles form in a specific spatial and temporal pattern in Alzheimer's disease. Although tangle formation correlates with dementia and neuronal loss, it remains unknown whether neurofibrillary pathology causes cell death. Recently, a mouse model of tauopathy was developed that reversibly expresses human tau with the dementia-associated P301L mutation.
View Article and Find Full Text PDFAs the scope of the problem of Alzheimer's disease (AD) grows due to an aging population, research into the devastating condition has taken on added urgency. Rare inherited forms of AD provide insight into the molecular pathways leading to degeneration and have made possible the development of transgenic animal models. Several of these models are based on the overexpression of amyloid precursor protein (APP), presenilins, or tau to cause production and accumulation of amyloid-beta into plaques or hyperphosphorylated tau into neurofibrillary tangles.
View Article and Find Full Text PDFAccumulation of amyloid-beta (Abeta) into senile plaques in Alzheimer's disease (AD) is a hallmark neuropathological feature of the disorder, which likely contributes to alterations in neuronal structure and function. Recent work has revealed changes in neurite architecture associated with plaques and functional changes in cortical signaling in amyloid precursor protein (APP) expressing mouse models of AD. Here we developed a method using gene transfer techniques to introduce green fluorescent protein (GFP) into neurons, allowing the investigation of neuronal processes in the vicinity of plaques.
View Article and Find Full Text PDFNeurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis.
View Article and Find Full Text PDFThe phospholipase C-beta1 (PLC-beta1) signalling pathway, activated via metabotropic glutamate receptors (mGluRs), is implicated in activity-dependent development of the cerebral cortex, as both PLC-beta1 and mGluR5 knockout mice exhibit disrupted barrel formation in somatosensory cortex. To characterize the effects of this signalling system on development of synaptic circuitry in barrel cortex, we have examined neuronal ultrastructure, synapse formation and dendritic spine morphology in PLC-beta1 knockout mice. Qualitative ultrastructure of neurons and synapse density in layers 2-4 of barrel cortex were unchanged in PLC-beta1 knockout mice during development [postnatal day (P) 5] and in mature cortex (P19-21).
View Article and Find Full Text PDFDuring the course of Alzheimer's disease (AD), neurons undergo extensive remodeling, contributing to the loss of function observed in the disease. Many brain regions in patients with AD show changes in axonal and dendritic fields, dystrophic neurites, synapse loss, and neuron loss. Accumulation of amyloid-beta protein, a pathological hallmark of the disease, contributes to many of these alterations of neuronal structure.
View Article and Find Full Text PDFHuntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion coding for an expanded polyglutamine tract in the huntingtin protein. Dendritic abnormalities occur in human HD patients and in several transgenic mouse models of the disease. In this study, we examine, for the first time, dendrite and spine pathology in the R6/1 mouse model of HD, which mimics neurodegeneration seen in human HD.
View Article and Find Full Text PDFHuntington's disease (HD) is a devastating neurodegenerative disorder caused by a CAG repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Transgenic mice expressing a human huntingtin transgene containing an expanded CAG repeat (R6/1 model) develop a neurodegenerative disorder closely resembling human HD. Previous work demonstrated that environmental enrichment delays the onset of motor symptoms in this mouse model.
View Article and Find Full Text PDF