Background: The vast majority of patients with ROS1 positive non-small cell lung cancer (NSCLC) derive clinical benefit from currently approved ROS1 therapies, including crizotinib and entrectinib. However, a small proportion of patients treated with ROS1 inhibitors fail to derive any clinical benefit and demonstrate rapid disease progression. The biological mechanisms underpinning intrinsic resistance remain poorly understood for oncogene-driven cancers.
View Article and Find Full Text PDFThe DEAD-box RNA helicase eIF4A1 carries out the key enzymatic step of cap-dependent translation initiation and is a well-established target for cancer therapy, but no drug against it has entered evaluation in patients. We identified and characterized a natural compound with broad antitumor activities that emerged from the first target-based screen to identify novel eIF4A1 inhibitors. We tested potency and specificity of the marine compound elatol versus eIF4A1 ATPase activity.
View Article and Find Full Text PDFActivation of translation initiation is a common trait of cancer cells. Formation of the heterotrimeric eukaryotic initiation factor F (eIF4F) complex is the rate-limiting step in 5' m7GpppN cap-dependent translation. This trimeric complex includes the eIF4E cap binding protein, the eIF4G scaffolding protein, and the DEAD box RNA helicase eIF4A.
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
May 2017
Gene-expression profiling and next-generation sequencing have defined diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis, as a heterogeneous group of subentities. Despite ongoing explosions of data illuminating disparate pathogenic mechanisms, however, the five-drug chemoimmunotherapy combination R-CHOP remains the frontline standard treatment. This has not changed in 15 years, since the anti-CD20 monoclonal antibody rituximab was added to the CHOP backbone, which first entered use in the 1970s.
View Article and Find Full Text PDFThe PIM family kinases promote growth and survival of tumor cells and are expressed in a wide variety of human cancers. Their potential as therapeutic targets, however, is complicated by overlapping activities with multiple other pathways and remains poorly defined in most clinical scenarios. Here we explore activity of the new pan-PIM inhibitor PIM447 in a variety of lymphoid-derived tumors.
View Article and Find Full Text PDF