Publications by authors named "Tara Koretsky"

Fancc suppresses cross-linker-induced genotoxicity, modulates growth-inhibitory cytokine responses, and modulates endotoxin responses. Although loss of the latter function is known to account for endotoxin-induced marrow failure in murine Fancc (mFancc)-deficient mice, some argue that cytokine and endotoxin hypersensitivities devolve simply from genomic instability. Seeking to resolve this question, we planned to ectopically express instructive human FANCC (hFANCC) mutants in murine Fancc-deficient hematopoietic stem cells.

View Article and Find Full Text PDF

Nucleophosmin (NPM) is frequently overexpressed in leukemias and other tumors. NPM has been reported to suppress oncogene-induced senescence and apoptosis and may represent a therapeutic target for cancer. We fused a NPM-derived peptide to the HIV-TAT (TAT-NPMDeltaC) and found that the fusion peptide inhibited proliferation and induced apoptotic death of primary fibroblasts and preleukemic stem cells.

View Article and Find Full Text PDF

Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge.

View Article and Find Full Text PDF

The Fanconi anemia (FA) group C protein, FANCC, interacts with STAT1 following stimulation with IFN-gamma and is required for proper docking of STAT1 at the IFN-gamma receptor alpha-chain (IFN-gammaRalpha, IFN-gammaR1). Consequently, loss of a functional FANCC results in decreased activation of STAT1 following IFN-gamma stimulation. Because type I IFN receptors influence the function of type II receptors, and vice versa, we conducted experiments designed to determine whether type I IFN-induced activation of other STAT proteins is compromised in FA-C cells and found that activation of STAT 1, 3, and 5 is diminished in type I IFN-stimulated cells bearing Fancc-inactivating mutations.

View Article and Find Full Text PDF

In normal cells the protein kinase PKR effects apoptosis in response to various extra and intracellular cues and can also function to suppress the neoplastic phenotype. Because most neoplastic cells are resistant to certain apoptotic cues, we reasoned that an early molecular event in carcinogenesis or leukemogenesis might be the inactivation of PKR by expression or activation of intracellular PKR inhibitors. Seeking novel PKR-modulating proteins we report here that nucleophosmin (NPM), a protein frequently overexpressed in a variety of human malignancies, binds to PKR, and inhibits its activation.

View Article and Find Full Text PDF

Proteins encoded by five of the six known Fanconi anemia (FA) genes form a heteromeric complex that facilitates repair of DNA damage induced by cross-linking agents. A certain number of these proteins, notably FANCC, also function independently to modulate apoptotic signaling, at least in part, by suppressing ground state activation of the pro-apoptotic interferon-inducible double-stranded RNA-dependent protein kinase (PKR). Because certain FANCC mutations interdict its anti-apoptotic function without interfering with the capacity of FANCC to participate functionally in the FA multimeric complex, we suspected that FANCC enhances cell survival independent of its participation in the complex.

View Article and Find Full Text PDF