Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present , fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor.
View Article and Find Full Text PDFBiomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.
View Article and Find Full Text PDFComparisons of observation-based emission estimates with emission inventories for oil and gas production operations have demonstrated that intermittency in emissions is an important factor to be accounted for in reconciling inventories with observations. Most emission inventories do not directly report data on durations of active emissions, and the variability in emissions over time must be inferred from other measurements or engineering calculations. This work examines a unique emission inventory, assembled for offshore oil and gas production platforms in federal waters of the Outer Continental Shelf (OCS) of the United States, which reports production-related sources on individual platforms, along with estimates of emission duration for individual sources.
View Article and Find Full Text PDFThe population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants.
View Article and Find Full Text PDFEnviron Sci Technol
March 2020
Shipboard measurements of offshore oil and gas facilities were conducted in the Gulf of Mexico in February 2018. Species measured at 1 s include methane, ethane, carbon-13 (C) and deuterium (D) isotopes of methane, and several combustion tracers. Significant variability in the emission composition is observed between individual sites, with typical ethane/methane ratios around 5.
View Article and Find Full Text PDFSpatially resolved emission inventories were used with an atmospheric dispersion model to predict ambient concentrations of methane, ethane, and propane in the Eagle Ford oil and gas production region in south central Texas; predicted concentrations were compared to ground level observations. Using a base case inventory, predicted median propane/ethane concentration ratios were 106% higher (95% CI: 83% higher-226% higher) than observations, while median ethane/methane concentration ratios were 112% higher (95% CI: 17% higher-228% higher) than observations. Predicted median propane and ethane concentrations were factors of 6.
View Article and Find Full Text PDFUnlabelled: Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates.
View Article and Find Full Text PDFEnviron Health Insights
January 2016
The Aerodyne Mobile Laboratory was deployed to the Houston Ship Channel and surrounding areas during the Benzene and Other Toxics Exposure field study in February 2015. We evaluated atmospheric concentrations of volatile organic hydrocarbons and other hazardous air pollutants of importance to human health, including benzene, 1,3-butadiene, toluene, xylenes, ethylbenzenes, styrene, and NO2. Ambient concentration measurements were focused on the neighborhoods of Manchester, Harrisburg, and Galena Park.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
We report infrared multiple photon dissociation spectra of cryogenically-cooled (NaSO4(-))2(H2O)n dianions (n = 0-6, 8) in the spectral range of the sulfate stretching and bending modes (580-1750 cm(-1)). Characteristic absorption bands and structural trends are identified based on a comparison to harmonic spectra of minimum-energy structures. The bare quarternary complex (NaSO4(-))2 exhibits a C2h structure containing two fourfold-coordinated sodium cations in-between the two chelating sulfate dianions.
View Article and Find Full Text PDFWe present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region.
View Article and Find Full Text PDFMethane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions.
View Article and Find Full Text PDFWe present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.
View Article and Find Full Text PDFWe report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.
View Article and Find Full Text PDFWe report infrared multiple photon dissociation (IRMPD) spectra of cryogenically-cooled H2PO4(-)(H2O)n anions (n = 2-12) in the spectral range of the stretching and bending modes of the solute anion (600-1800 cm(-1)). The spectra cannot be fully understood using the standard technique of comparison to harmonic spectra of minimum-energy structures; a satisfactory assignment requires considering anharmonic effects as well as entropy-driven hydrogen bond network fluctuations. Aided by finite temperature ab initio molecular dynamics simulations, the observed changes in the position, width and intensity of the IRMPD bands with cluster size are related to the sequence of microsolvation.
View Article and Find Full Text PDFResults of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude.
View Article and Find Full Text PDFFacility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.
View Article and Find Full Text PDFEquipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T&S) sector of the US natural gas system were measured, including 25 sites required to report under the EPA greenhouse gas reporting program (GHGRP). Direct measurements of fugitive and vented sources were combined with AP-42-based exhaust emission factors (for operating reciprocating engines and turbines) to produce a study onsite estimate. Site-level methane emissions were also concurrently measured with downwind-tracer-flux techniques.
View Article and Find Full Text PDFMethane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision.
View Article and Find Full Text PDFInfrared multiple photon dissociation (IRMPD) spectra of NO3(-)(HNO3)m(H2O)n(H2)z with m = 1-3, up to n = 8 and z ≥ 1, are measured in the fingerprint region (550-1880 cm(-1)), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the m = 1, n = 0 cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O2NO(-)···H(+)···ONO2(-)).
View Article and Find Full Text PDFExtending the fully quantum-state-resolved description of elementary chemical reactions beyond three or four atom systems is a crucial issue in fundamental chemical research. Reactions of methane with F, Cl, H or O are key examples that have been studied prominently. In particular, reactive resonances and nonintuitive mode-selective chemistry have been reported in experimental studies for the F+CH4 →HF+CH3 reaction.
View Article and Find Full Text PDFThe vibrational spectroscopy of monohydrated dihydrogen phosphate anions, H2PO4(-)(H2O), is studied in the O-H stretching (2700-3900 cm(-1)) and the fingerprint regions (600-1800 cm(-1)). Assignment of the experimental infrared multiple photon photodissociation spectra based on the predicted harmonic spectra of energetically low-lying 0 K structures is not conclusive. Ab initio molecular dynamics simulations reveal that the water molecule undergoes large amplitude motion, even at low internal temperatures, and that the dipole time correlation function qualitatively captures the anharmonic effects of the low-barrier isomerization reaction on the infrared intensities.
View Article and Find Full Text PDFHigh-resolution photoelectron spectra are reported of the cryogenically cooled indenyl and fluorenyl anions, C9H7(-) and C13H9(-), obtained with slow electron velocity-map imaging. The spectra show well-resolved transitions to the neutral ground states, giving electron affinities of 1.8019(6) eV for indenyl and 1.
View Article and Find Full Text PDFThe structure and stability of mass-selected bisulfate, sulfuric acid, and water cluster anions, HSO4(-)(H2SO4)m(H2O)n, are studied by infrared photodissociation spectroscopy aided by electronic structure calculations. The triply hydrogen-bound HSO4(-)(H2SO4) configuration appears as a recurring motif in the bare clusters, while incorporation of water disrupts this stable motif for clusters with m > 1. Infrared-active vibrations predominantly involving distortions of the hydrogen-bound network are notably missing from the infrared multiple-photon dissociation (IRMPD) spectra of these ions but are fully recovered by messenger-tagging the clusters with H2.
View Article and Find Full Text PDF