Publications by authors named "Tara Deans"

We asked researchers from a range of disciplines across biology, engineering, and medicine to describe a current technological need. The goal is to provide a sample of the various technological gaps that exist and inspire future research projects.

View Article and Find Full Text PDF

Reprogramming cells will play a fundamental role in shaping the future of cell therapies by developing new strategies to engineer cells for improved performance and higher-order physiological functions. Approaches in synthetic biology harness cells' natural ability to sense diverse signals, integrate environmental inputs to make decisions, and execute complex behaviors based on the health of the organism or tissue. In this review, we highlight strategies in synthetic biology to reprogram cells, and discuss how recent approaches in the delivery of modified mRNA have created new opportunities to alter cell function in vivo.

View Article and Find Full Text PDF

The in vitro differentiation of pluripotent stem cells into desired lineages enables mechanistic studies of cell transitions into more mature states that can provide insights into the design principles governing cell fate control. We are interested in reprogramming pluripotent stem cells with synthetic gene circuits to drive mouse embryonic stem cells (mESCs) down the hematopoietic lineage for the production of megakaryocytes, the progenitor cells for platelets. Here, we describe the methodology for growing and differentiating mESCs, in addition to inserting a transgene to observe its expression throughout differentiation.

View Article and Find Full Text PDF

We developed a method for the efficient generation of engineered platelets that can be filled with any recombinant therapeutic protein during the differentiation process by reprogramming megakaryocytes, the progenitor cells of platelets. To demonstrate the versatility of this approach, we loaded cytoplasmic and secreted proteins that can be delivered as active enzymes to recipient cells, be released upon platelet activation, or be continuously secreted by platelets over time.

View Article and Find Full Text PDF

The differentiation of pluripotent stem cells into desired lineages enables mechanistic studies of cell transitions into more mature states that can provide insights into the design principles governing cell fate control. We are interested in reprogramming pluripotent stem cells with synthetic gene circuits to drive mouse embryonic stem cells (mESCs) down the hematopoietic lineage for the production of megakaryocytes, the progenitor cells for platelets. Here, we describe the methodology for growing and differentiating mESCs, in addition to inserting a transgene to observe its expression throughout differentiation.

View Article and Find Full Text PDF

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos.

View Article and Find Full Text PDF

Advances in synthetic biology have provided genetic tools to reprogram cells to obtain desired cellular functions that include tools to enable the customization of cells to sense an extracellular signal and respond with a desired output. These include a variety of engineered receptors capable of transmembrane signaling that transmit information from outside of the cell to inside when specific ligands bind to them. Recent advances in synthetic receptor engineering have enabled the reprogramming of cell and tissue behavior, controlling cell fate decisions, and providing new vehicles for therapeutic delivery.

View Article and Find Full Text PDF

Expanding the genetic toolbox for prokaryotic synthetic biology is a promising strategy for enhancing the dynamic range of gene expression and enabling new engineered applications for research and biomedicine. Here, we reverse the current trend of moving genetic parts from prokaryotes to eukaryotes and demonstrate that the activating eukaryotic transcription factor QF and its corresponding DNA-binding sequence can be moved to E. coli to introduce transcriptional activation, in addition to tight off states.

View Article and Find Full Text PDF

Megakaryocytes are a rare population of cells that develop in the bone marrow and function to produce platelets that circulate throughout the body and form clots to stop or prevent bleeding. A major challenge in studying megakaryocyte development, and the diseases that arise from their dysfunction, is the identification, classification, and enrichment of megakaryocyte progenitor cells that are produced during hematopoiesis. Here, we present a high throughput strategy for identifying and isolating megakaryocytes and their progenitor cells from a heterogeneous population of bone marrow samples.

View Article and Find Full Text PDF

We asked group leaders how they foster mutually reinforcing research productivity and psychological safety in their teams.

View Article and Find Full Text PDF

One of the significant challenges remaining in the field of drug delivery is insufficient targeting of diseased tissues or cells. While efforts to perform targeted drug delivery by engineered nanoparticles have shown some success, there are underlying targeting, toxicity, and immunogenicity challenges. By contrast, live cells usually have innate targeting mechanisms, and can be used as drug-delivery vehicles to increase the efficiency with which a drug accumulates to act on the intended tissue.

View Article and Find Full Text PDF

The in vitro production of platelets could provide a life-saving intervention for patients that would otherwise require donor-derived platelets. Producing large numbers of platelets in vitro from their progenitor cells, megakaryocytes, remains remarkably difficult and inefficient. Here, a human megakaryoblast leukemia cell line (MEG-01) was used to assess the maturation of megakaryocytes and to develop a new methodology for producing high numbers of platelet-like particles from mature MEG-01 cells in vitro.

View Article and Find Full Text PDF

Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits.

View Article and Find Full Text PDF

Synthetic biology is a relatively new field of science that combines aspects of biology and engineering to create novel tools for the construction of biological systems. Using tools within synthetic biology, stem cells can then be reprogrammed and differentiated into a specified cell type. Stem cells have already proven to be largely beneficial in many different therapies and have paved the way for tissue engineering and regenerative medicine.

View Article and Find Full Text PDF

Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior.

View Article and Find Full Text PDF

The field of mammalian synthetic biology seeks to engineer enabling technologies to create novel approaches for programming cells to probe, perturb, and regulate gene expression with unprecedented precision. To accomplish this, new genetic parts continue to be identified that can be used to build novel genetic circuits to re-engineer cells to perform specific functions. Here, we establish a new transcription-based genetic circuit that combines genes from the quinic acid sensing metabolism of Neorospora crassa and the bacterial Lac repressor system to create a new orthogonal genetic tool to be used in mammalian cells.

View Article and Find Full Text PDF

Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology.

View Article and Find Full Text PDF

Genetically identical cells in culture often exhibit significant variations, or noise, in gene expression, largely due to transcriptional bursting. Halpern et al. (2015) have developed methods to study gene bursting in tissues to find that this transcriptional bursting also occurs in the mammalian liver and may contribute to functional plasticity in hepatocytes.

View Article and Find Full Text PDF

Biomaterials are designed to mimic aspects of various extracellular matrix environments, through chemical modifications to input biological or chemical signals. However, the dynamic nature and timing of gene expression during cellular events is much more difficult to mimic and control in these synthetic environments. Here, we utilized concepts of photochemistry combined with click chemistry for synthetic biology applications to modulate cellular gene expression in poly(ethylene glycol) (PEG) hydrogels.

View Article and Find Full Text PDF

Combining synthetic biology and materials science will enable more advanced studies of cellular regulatory processes, in addition to facilitating therapeutic applications of engineered gene networks. One approach is to couple genetic inducers into biomaterials, thereby generating 3D microenvironments that are capable of controlling intrinsic and extrinsic cellular events. Here, we have engineered biomaterials to present the genetic inducer, IPTG, with different modes of activating genetic circuits in vitro and in vivo.

View Article and Find Full Text PDF

Here, we introduce an engineered, tunable genetic switch that couples repressor proteins and an RNAi target design to effectively turn any gene off. We used the switch to regulate the expression of EGFP in mouse and human cells and found that it offers >99% repression as well as the ability to tune gene expression. To demonstrate the system's modularity and level of gene silencing, we used the switch to tightly regulate the expression of diphtheria toxin and Cre recombinase, respectively.

View Article and Find Full Text PDF