Publications by authors named "Tara Beth Sweet"

Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca(2+) and phosphatidylinositol signal transduction pathways.

View Article and Find Full Text PDF

The large-conductance Ca(2+)-activated potassium (BK(Ca)) channel of smooth muscle is unusually sensitive to Ca(2+) as compared with the BK(Ca) channels of brain and skeletal muscle. This is due to the tissue-specific expression of the BK(Ca) auxiliary subunit beta1, whose presence dramatically increases both the potency and efficacy of Ca(2+) in promoting channel opening. beta1 contains no Ca(2+) binding sites of its own, and thus the mechanism by which it increases the BK(Ca) channel's Ca(2+) sensitivity has been of some interest.

View Article and Find Full Text PDF

It has been established that the large conductance Ca(2+)-activated K(+) channel contains two types of high-affinity Ca(2+) binding sites, termed the Ca(2+) bowl and the RCK1 site. The affinities of these sites, and how they change as the channel opens, is still a subject of some debate. Previous estimates of these affinities have relied on fitting a series of conductance-voltage relations determined over a series of Ca(2+) concentrations with models of channel gating that include both voltage sensing and Ca(2+) binding.

View Article and Find Full Text PDF