Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multiple genotypes to identify alleles with variable responses to heat or cold stress and to distinguish examples of cis- or trans-regulatory variation for stress-responsive expression changes.
View Article and Find Full Text PDFTransposable elements (TEs) pervade most eukaryotic genomes. The repetitive nature of TEs complicates the analysis of their expression. Evaluation of the expression of both TE families (using unique and multi-mapping reads) and specific elements (using uniquely mapping reads) in leaf tissue of three maize (Zea mays) inbred lines subjected to heat or cold stress reveals no evidence for genome-wide activation of TEs; however, some specific TE families generate transcripts only in stress conditions.
View Article and Find Full Text PDFRoot system architecture results from a highly plastic developmental process to adapt to environmental conditions. In particular, the development of lateral roots and root hair growth are constantly optimized to the rhizosphere properties, including biotic and abiotic constraints. The development of the root system is tightly controlled by auxin, the driving morphogenic hormone in plants.
View Article and Find Full Text PDFDevelopmental processes that control root system architecture are critical for soil exploration by plants, allowing for uptake of water and nutrients. Conversion of the auxin precursor indole-3-butyric acid (IBA) to active auxin (indole-3-acetic acid; IAA) modulates lateral root formation. However, mechanisms governing IBA-to-IAA conversion have yet to be elucidated.
View Article and Find Full Text PDFIncreasing the tolerance of maize seedlings to low-temperature episodes could mitigate the effects of increasing climate variability on yield. To aid progress toward this goal, we established a growth chamber-based system for subjecting seedlings of 40 maize inbred genotypes to a defined, temporary cold stress while collecting digital profile images over a 9-daytime course. Image analysis performed with PlantCV software quantified shoot height, shoot area, 14 other morphological traits, and necrosis identified by color analysis.
View Article and Find Full Text PDFMitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes.
View Article and Find Full Text PDFAuxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function.
View Article and Find Full Text PDFLong before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response.
View Article and Find Full Text PDFThe plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways.
View Article and Find Full Text PDFAuxin regulates many aspects of plant development, in part, through degradation of the Aux/IAA family of transcriptional repressors. Consequently, stabilizing mutations in several Aux/IAA proteins confer reduced auxin responsiveness. However, of the 29 apparent Aux/IAA proteins in Arabidopsis thaliana, fewer than half have roles established through mutant analysis.
View Article and Find Full Text PDF