Publications by authors named "Tapasree R Sarkar"

Epidemiological studies have shown that circadian rhythm disruption (CRD) is associated with the risk of breast cancer. However, the role of CRD in mammary gland morphology and aggressive basal mammary tumorigenesis and the molecular mechanisms underlying CRD and cancer risk remain unknown. To investigate the effect of CRD on aggressive tumorigenesis, a genetically engineered mouse model that recapitulates the human basal type of breast cancer was used for this study.

View Article and Find Full Text PDF

Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers.

View Article and Find Full Text PDF

Cancer is a current dreadful disease and the leading cause of death. Next to cardiovascular diseases, cancer is the most severe threat to human life and health. Breast cancer is the most common invasive cancer diagnosed in women.

View Article and Find Full Text PDF

Chronic exposure to high glucose inside the human body helps in the progression of cancer by activating various signaling pathways including PI3K, Akt, mTOR, Ras, Raf, MAPK, and PKC. Hyperglycemia induces ROS and AGE production and decreases the functional activities of the cellular antioxidant system. By downregulating the prolyl hydroxylase, it stabilizes HIF-α leading to EMT-induced cancer progression and inhibition of apoptosis.

View Article and Find Full Text PDF

Background: The endogenous circadian clock, which controls daily rhythms in the expression of at least half of the mammalian genome, has a major influence on cell physiology. Consequently, disruption of the circadian system is associated with wide range of diseases including cancer. While several circadian clock genes have been associated with cancer progression, little is known about the survival when two or more platforms are considered together.

View Article and Find Full Text PDF

Measuring usual dietary intake in freely living humans is difficult to accomplish. As a part of our recent study, a food frequency questionnaire was completed by healthy adult men and women at days 0 and 90 of the study. Data from the food questionnaire were analyzed with a nutrient analysis program ( www.

View Article and Find Full Text PDF
Article Synopsis
  • Hypoxia triggers the formation of new blood vessels (neoangiogenesis) and promotes epithelial-mesenchymal transition (EMT) in tumor cells, leading to enhanced tumor growth and varied cell differentiation.
  • In a mouse model, larger breast cancer tumors exhibited increased vascularization and specific markers indicating hypoxia and EMT, including CD31, E-cadherin loss, and vimentin.
  • Co-implanting breast cancer cells with HMLE cells that overexpress Snail significantly boosted tumor growth and vascular development, with FOXC2 being crucial for these processes by facilitating endothelial characteristics in carcinoma cells.
View Article and Find Full Text PDF

Two-dimensional (2D) molybdenum disulfide (MoS) nanomaterials are an emerging class of biomaterials that are photoresponsive at near-infrared wavelengths (NIR). Here, we demonstrate the ability of 2D MoS to modulate cellular functions of human stem cells through photothermal mechanisms. The interaction of MoS and NIR stimulation of MoS with human stem cells is investigated using whole-transcriptome sequencing (RNA-seq).

View Article and Find Full Text PDF

Motivation: It is well known that the integration among different data-sources is reliable because of its potential of unveiling new functionalities of the genomic expressions, which might be dormant in a single-source analysis. Moreover, different studies have justified the more powerful analyses of multi-platform data. Toward this, in this study, we consider the circadian genes' omics profile, such as copy number changes and RNA-sequence data along with their survival response.

View Article and Find Full Text PDF

Background: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease.

View Article and Find Full Text PDF

The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function.

View Article and Find Full Text PDF

Expression of the transcription factor FOXC2 is induced and necessary for successful epithelial-mesenchymal transition, a developmental program that when activated in cancer endows cells with metastatic potential and the properties of stem cells. As such, identifying agents that inhibit the growth of FOXC2-transformed cells represents an attractive approach to inhibit chemotherapy resistance and metastatic dissemination. From a high throughput synthetic lethal screen, we identified a small molecule, FiVe1, which selectively and irreversibly inhibits the growth of mesenchymally transformed breast cancer cells and soft tissue sarcomas of diverse histological subtypes.

View Article and Find Full Text PDF

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization.

View Article and Find Full Text PDF

The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer.

View Article and Find Full Text PDF

Our recent study suggests that targeting GD3 synthase (also known as ST8SIA1)-the rate-limiting enzyme in biosynthesis of the breast cancer stem cell marker GD2-abrogates metastasis and depletes the cancer stem cell populations within a tumor, thus providing an effective therapeutic strategy against metastatic breast cancers.

View Article and Find Full Text PDF

Flavonoid and limonoid glycosides influence taste properties as well as marketability of Citrus fruit and products, particularly grapefruit. In this work, nine grapefruit putative natural product glucosyltransferases (PGTs) were resolved by either using degenerate primers against the semiconserved PSPG box motif, SMART-RACE RT-PCR, and primer walking to full-length coding regions; screening a directionally cloned young grapefruit leaf EST library; designing primers against sequences from other Citrus species; or identifying PGTs from Citrus contigs in the harvEST database. The PGT proteins associated with the identified full-length coding regions were recombinantly expressed in Escherichia coli and/or Pichia pastoris and then tested for activity with a suite of substrates including flavonoid, simple phenolic, coumarin, and/or limonoid compounds.

View Article and Find Full Text PDF

Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2-enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies.

View Article and Find Full Text PDF

Resistance to chemotherapy and metastases are the major causes of breast cancer-related mortality. Moreover, cancer stem cells (CSC) play critical roles in cancer progression and treatment resistance. Previously, it was found that CSC-like cells can be generated by aberrant activation of epithelial-mesenchymal transition (EMT), thereby making anti-EMT strategies a novel therapeutic option for treatment of aggressive breast cancers.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, CEBPD) is a tumor suppressor that is downregulated during breast cancer progression but may also promote metastasis. Here, we have investigated the mechanism(s) regulating C/EBPδ expression and its role in human breast cancer cells. We describe a novel pathway by which the tyrosine kinase Src downregulates C/EBPδ through the SIAH2 E3 ubiquitin ligase.

View Article and Find Full Text PDF

Maintenance of genomic integrity is an essential cellular function. We previously reported that the transcription factor and tumor suppressor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD; also known as "NFIL-6β") promotes genomic stability. However, the molecular mechanism was not known.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD, NFIL-6beta) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPdelta exerts its effect are largely unknown. Here, we report that C/EBPdelta induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPdelta knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3beta.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

Carboxyl-coated magnetic nanoparticles (MNPs) were used to demonstrate dual functionality: isolation of messenger RNA (mRNA) from mammalian cells and extraction of the supercoiled (sc) form of plasmid DNA (pDNA) from agarose gel. These MNPs were attached with 5'-NH(2)-tagged oligo-(dT)(25) primer and were used to isolate mRNA from breast cancer cells. The isolated mRNA was used for amplification of beta-actin to confirm the compatibility.

View Article and Find Full Text PDF