Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).
View Article and Find Full Text PDFThe magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2009
Recently the inverse magnetocaloric effect has been observed in different compounds. However, it is very rare for any manifestation of the effect to be seen in manganites. We have found the inverse magnetocaloric effect in the case of polycrystalline La(0.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2009
A study of the magnetocaloric effect has been performed on a polycrystalline CeRu(2)Ge(2) compound, which exhibits an antiferromagnetic ordering below T(N) = 8.3 K and enters into a ferromagnetic ground state at T(C) = 7.4 K.
View Article and Find Full Text PDF