This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions.
View Article and Find Full Text PDFIn the quest to advance wearable electronics, this study presents a novel method using nitrogen-doped lutetium-carbon microspheres (N, Lu-CMS) for high-performance piezoelectric energy harvesting. The synthesis of N, Lu-CMS begins with the polymerization of sucrose, followed by the preparation of N, Lu-CMS metal complexes through the incorporation of lutetium (III) nitrate hydrate and thiourea, yielding a black powder product. The wearable electronic device is designed with a silicon rubber (SR) matrix, reinforced with 0D fillers such as N, Lu-CMS, or molybdenum disulfide (MoS₂).
View Article and Find Full Text PDFHigh- ferro-/ferrimagnetic quadruple perovskites constitute an important class of oxides that has garnered a lot of research attention in recent times, but their synthesis is commonly achieved under high-pressure conditions. Thus, the development of high- quadruple perovskites that can be synthesized under ambient pressure can be a key to the above problem. Herein, we report ambient pressure synthesis of a series of new A-site ordered quadruple perovskites, LnCuMnTiO (Ln = La, Nd; = 0, 0.
View Article and Find Full Text PDFThe development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development.
View Article and Find Full Text PDFThis review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2024
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules.
View Article and Find Full Text PDFQuadruple perovskites with high magnetic transition temperatures are an interesting class of compounds but are synthesized typically under high pressure. Ambient pressure synthesis of new multinary quadruple perovskites having a high global instability index (GII) and transition temperature can be interesting for future exploration of high- oxides. A new A- and B-site ordered multinary quadruple perovskite, LaCuFeRuSbO, is synthesized by conventional solid-state reactions at ambient pressure.
View Article and Find Full Text PDFTopotactic ion exchange is ubiquitous in the preparation of many metastable solids with layered structures. In recent times, the scope of ion exchange has been extended to quasi-2D and -3D structures including nanocrystals. The low-temperature solid-state exchange is yet another unique synthetic tool to access preconceived structures for the rational design of solids.
View Article and Find Full Text PDFElectrochemical water splitting, which is a highly promising and environmentally friendly technology for H fuel production, faces significant hurdles due to the sluggish kinetics of the oxygen evolution reaction. Co -based oxides have garnered significant attention as alternative catalysts for the oxygen evolution reaction owing to the Co/Co redox couple. Enhancing the challenging Co → Co oxidation process can further improve the catalytic oxygen evolution reaction.
View Article and Find Full Text PDFWe report co-electrolysis of seawater and carbon dioxide (CO) gas in a solar cell-integrated membraneless microfluidic reactor for continuous synthesis of organic products. The microfluidic reactor was fabricated using polydimethylsiloxane substrate comprising of a central microchannel with a pair of inlets for injection of CO gas and seawater and an outlet for removal of organic products. A pair of copper electrodes were inserted into microchannel to ensure its direct interaction with incoming CO gas and seawater as they pass into the microchannel.
View Article and Find Full Text PDFThe impact of an oil droplet on a water surface has been explored with the aid of computational fluid dynamics simulations. The study reveals the details of the spatiotemporal evolution of such a ternary system with a triplet of interfaces, e.g.
View Article and Find Full Text PDFThis work has aimed to synthesize less cytotoxic but antibacterial effective materials. Here we synthesized zinc, titanium nanoparticles based multishell hollow spheres (ZnO@TiO2 MSHS) via sequential template approach (STA) and studied their comparative antimicrobial activity with pure zinc and titanium nanoparticles (NPs). Various techniques have been used to explore the physico-chemical properties of the hybrid shells (ZnO@TiO2 MSHS).
View Article and Find Full Text PDFWe computationally explore the effects of pre-impact shape of an oil droplet on the spatiotemporal dynamics after the droplet impacts an air-water interface. Simulations reveal that the initial shape of the impacting oil-droplet alters the post-impact transient flow structures during the evolution. The spherical and oblate drop spreads over the crater to manifest interesting flow morphologies including the formation of oil-toroids and compound oil-droplets.
View Article and Find Full Text PDFCerium oxide particles with different morphologies, namely nanoparticles, nanofibers, nanocubes, and rice grains have been prepared by simple chemical routes. The shape and size of the synthesized morphologies have been studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) and selected area electron diffraction (SAED) techniques have been used to determine their crystal phases.
View Article and Find Full Text PDFCorrection for 'Citrate combustion synthesized Al-doped CaCu3Ti4O12 quadruple perovskite: synthesis, characterization and multifunctional properties' by Kamalesh Pal et al., Phys. Chem.
View Article and Find Full Text PDFThe facile synthesis of the Al-doped CaCuTiO quadruple perovskite, a well-known and vastly studied material for various technological applications, using the modified citrate combustion route along with structural, microstructural, and X-ray photoelectron spectroscopic (XPS) characterization and magnetic, dielectric and electrical properties has been investigated and reported here. The possible applications of the material as a Schottky barrier diode (SBD) in optoelectronic devices and as a catalyst in methanol steam reforming (MSR) reaction for hydrogen generation, hitherto unreported in the open literature, have also been explored. The compound is crystallized in the cubic body centered Im3[combining macron] space group and the particle size is found to be in nanodimension with rather narrow size distribution.
View Article and Find Full Text PDFThis study focuses on the photocatalytic degradation of quinoline, a recalcitrant heterocyclic nitrogenous aromatic organic compound, using the mixed oxide ZnO-TiO photo-catalyst. Photo-catalysts were synthesized by the solid-state reaction method at different calcination temperatures of 400 °C, 600 °C, and 800 °C. Different analytical methods, including Field emission scanning electron microscope, Brunauer-Emmett-Teller surface area, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis were used for the catalyst characterization.
View Article and Find Full Text PDFDevelopment of layered perovskites for sunlight-driven catalysis has gained a lot of attention in contemporary inorganic materials research. While the compositional modifications of three-dimensional perovskites are ubiquitous, they are infrequent in the case of layered perovskites particularly with niobates when the perovskite layer thickness is low. We report here the solid state synthesis of a series of lead-free double-layer Aurivillius niobates, LaBi2Nb1.
View Article and Find Full Text PDFA straightforward synthetic strategy is developed in this study to synthesize highly fluorescent red phosphorus on nitrogen-doped reduced graphene oxide (f-RP@N-rGO) nanosheets in an aqueous medium; this is used as a novel detection platform for the label-free real-time sensing of nucleic acids with low background noise and a high signal-to-noise ratio.
View Article and Find Full Text PDFA modified method is described for the preparation of amino-functionalized covalent organic framework nanosheets (COF-NSs). These consist of hexagonal layered sheets and were prepared from commercially available starting materials (p-phenylenediamine and benzene-1,3,5-tricarboxaldehyde). The interlayer stacking interactions between the ultra-thin COF-NSs became weak because the π stacking is destroyed by sonication.
View Article and Find Full Text PDFThis study improves the water solubility and cellular uptake of guanosine (GuN) through an inclusion complexation with cyclodextrin derivatives (CDs), namely β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and sulfobutyl ether-β-cyclodextrin (SBE-β-CD). Inclusion complexes of GuN and CDs are synthesized in a 1:1 stoichiometric ratio with binding constants calculated using the Benesi-Hildebrand method. Characterizations of the prepared solid complexes using FTIR, XRD, TGA-DSC, and SEM indicate that GuN is found inside the cavity of the CDs.
View Article and Find Full Text PDFSemiconductor photocatalysis under natural sunlight is an emergent area in contemporary materials research, which has attracted considerable attention toward the development of catalysts for environmental remediation using solar energy. A series of five-layer Aurivillius-phase perovskites, BiATiFeO (A = Ca, Sr, and Pb), are synthesized for the first time. Rietveld refinements of the powder X-ray diffraction data indicated orthorhombic structure for the Aurivillius phases with Fe largely occupying the central octahedral layer, whereas the divalent cations (Ca, Sr, and Pb) are statistically distributed over the cubo-octahedral A-sites of the perovskite.
View Article and Find Full Text PDFWe report an experimental study for the structural and magnetic properties of highly pure LaFeMnO perovskite phase. The impurity free LaFeMnO has been prepared by sol-gel technique at 500 °C and annealed at different temperatures up to 1000 °C. Previous works on LaFeMnO revealed presence of secondary phases along with contradicting magnetic properties.
View Article and Find Full Text PDFTopotactic ion exchange in open-framework solids and oxides with layered and tunnel structures has resulted in the formation of a variety of metastable functional materials that are inaccessible otherwise. These ion exchanges are primarily limited to the above structure types because of the presence of labile ions as loosely held charge-compensating cations/anions as in the framework or tunnel structures or the lability of the ions/charged motifs in interlayer galleries of layered oxides. While such topotactic exchanges are common in the above structure types, they are rare in the three-dimensional (3D) close-packed structures based solely on corner- and/or edge-connected polyhedral networks.
View Article and Find Full Text PDF