Publications by authors named "Tapas Kumar Mal"

Dronpa is a green fluorescent protein homologue with a photochromic property. A green laser illumination reversibly converts Dronpa from a green-emissive bright state to a non-emissive dark state, and ultraviolet illumination converts it to the bright state. We have employed solution NMR to understand the underlying molecular mechanism of the photochromism.

View Article and Find Full Text PDF

The structural basis for the photochromism in the fluorescent protein Dronpa is poorly understood, because the crystal structures of the bright state of the protein did not provide an answer to the mechanism of the photochromism, and structural determination of the dark state has been elusive. We performed NMR analyses of Dronpa in solution at ambient temperatures to find structural flexibility of the protein in the dark state. Light-induced changes in interactions between the chromophore and beta-barrel are responsible for switching between the two states.

View Article and Find Full Text PDF

Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued.

View Article and Find Full Text PDF

Green fluorescent protein from the jellyfish (Aequorea GFP) and GFP-like proteins from coral species encode light-absorbing chromophores within their protein sequences. A coral fluorescent protein, Kaede, contains a tripeptide, His(62)-Tyr(63)-Gly(64), which acts as a green chromophore that is photoconverted to red. Here, we present the structural basis for the green-to-red photoconversion.

View Article and Find Full Text PDF