Publications by authors named "Tapas Kumar Achar"

Article Synopsis
  • Formaldehyde is a reactive compound commonly found in everyday products, contributing to higher environmental levels and is also produced in the human body.
  • The adverse effects of formaldehyde necessitate the development of reliable methods for monitoring its presence in both environmental and biological samples.
  • This review discusses recent advancements in chemodosimeters designed for formaldehyde detection, categorizing them into three main reaction types, with changes in color or emission making detection possible without specialized equipment.
View Article and Find Full Text PDF

Distal C-H bond functionalization of heterocycles remained extremely challenging with covalently attached directing groups (DG). Lack of proper site for DG attachment and inherent catalyst poisoning by heterocycles demand alternate routes for site selective functionalization of their distal C-H bonds. Utilizing non-productive coordinating property to hold the heterocycle into the cavity of a template system in a host-guest manner, we report distal C-H alkylation (C-5 of quinoline and thiazole, C-7 of benzothiazole and benzoxazole) of heterocycles.

View Article and Find Full Text PDF

α,β-Alkenyl carboxylic acids undergo Cu -mediated decarboxylative annulation reactions with aliphatic cyclic ketones to provide synthetically valuable di-heterocycles. The annulation process tolerates a variety of aliphatic ketones and heterocyclic alkenyl carboxylic acids, producing substituted fused furan derivatives with complete regioselectivity. The current protocol offers a synthetically applicable pathway to construct a variety of oligo-heterocycles through Cu-mediated single-electron transfer and decarboxylation.

View Article and Find Full Text PDF

Palladium(II)-catalyzed meta-selective C-H allylation of arenes has been developed utilizing synthetically inert unactivated acyclic internal olefins as allylic surrogates. The strong σ-donating and π-accepting ability of pyrimidine-based directing group facilitates the olefin insertion by overcoming inertness of the typical unactivated internal olefins. Exclusive allyl over styrenyl product selectivity as well as E stereoselectivity were achieved with broad substrate scope, wide functional-group tolerance, and good to excellent yields.

View Article and Find Full Text PDF

An efficient method has been developed to afford highly C-5 selective olefination of thiazole derivatives utilizing a bifunctional template in an intermolecular fashion. Coordinative interaction between the substrates and the metal chelated template backbone plays a crucial role in high C-5 selectivity. Excellent selectivity for the C-5 position was observed while mono substituted (2- or 4-) or even more challenging unsubstituted thiazoles were employed.

View Article and Find Full Text PDF

Directing group assisted ortho-C-H activation has been known for the last few decades. In contrast, extending the same approach to achieve activation of the distal meta- and para-C-H bonds in aromatic molecules remained elusive for a long time. The main challenge is the conception of a macrocyclic transition state, which is needed to anchor the metal catalyst close to the target bond.

View Article and Find Full Text PDF

Achieving site-selective C-H functionalization of arene is a fundamental challenge, as it is mainly controlled by the electronic nature of the molecules. A chelation-assisted C-H functionalization strategy overcomes the selectivity issues by utilizing distance and geometry of covalently attached directing groups (DGs). This strategy requires stoichiometric DG installation/removal and a suitable functional group on which to tether the DG.

View Article and Find Full Text PDF

With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies.

View Article and Find Full Text PDF

The discovery of a direct method for the synthesis of three-ring heterocyclic carbazoles from unactivated arenes and anilides by a metal-free (organic) intermolecular dehydrogenative annulation reaction under ambient laboratory conditions is reported. Iodine(III) was used as the sole reagent either stoichiometrically from inexpensive phenyliodine diacetate or organocatalytically by in situ generation from PhI-mCPBA. In a single step, three C(sp)-H bonds and one N(sp)-H bond are functionalized from two different arenes for tandem C-C and C-N bond formation reactions.

View Article and Find Full Text PDF

Iodinium cation (I(+) or IOAc) was produced from the combination of phenyliodine diacetate (PIDA) and iodine. I(+) facilitated the direct vicinal difunctionalization of olefins to α-azido, α-trideuteriomethoxy, α-2,2,2-trifluoroethoxy and α-acyloxy alkyl iodides via cation-π interaction at room temperature and under transition-metal free conditions.

View Article and Find Full Text PDF

A solvent-free cross-coupling method for oxidative amidation of aldehydes and alcohols via a metal-free radial pathway has been demonstrated. The proposed methodology uses the TBAI-TBHP combination which efficiently induces metal-free C-H activation of aldehydes under neat conditions at 50 °C or ball-milling conditions at room temperature.

View Article and Find Full Text PDF