Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial scenarios because of the complex and dynamic relationship between devices.
View Article and Find Full Text PDFTo address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution-the algorithm for identifying mental health conditions. To begin, two types of data processing are performed on the original vibration data: wavelet noise reduction and wavelet packet noise reduction; this retains more valuable information for mental health identification in the original signal; secondly, the CNN employs the concept of hierarchical convolution, and three distinct scaled convolution kernels are utilized to extract features from numerous angles; ultimately, the convolution kernel's extracted features are fed into the pruning strategy's capsule network for mental health diagnosis.
View Article and Find Full Text PDF