Publications by authors named "Tapani Vuorinen"

Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds.

View Article and Find Full Text PDF

Hundreds of different fast-growing hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material.

View Article and Find Full Text PDF

Although extractives have been symbolized as major bioactive pharmacological compounds from (Salicaceae) bark, we speculated that these pharmaceutical effects cannot be solely attributed to phenolic components and their derivatives, but the long-chain suberin acids also contribute to their therapeutic effects. Hence, isolation and deconstruction of suberin were conducted, for the first time, to enrich our knowledge about the macromolecular components at the cell wall of willow bark. Saponification was adopted to obtain suberin extracts at a yield of approximately 5 wt % based on the bark of the studied hybrids.

View Article and Find Full Text PDF

Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. Historically, willow ( sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties.

View Article and Find Full Text PDF

Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols.

View Article and Find Full Text PDF
Article Synopsis
  • Willow wood is identified as a low-cost, renewable biomass source for creating highly porous activated carbon suitable for energy storage devices.
  • The activated carbon achieved impressive electrochemical properties, including a high surface area of ∼2,800 m²/g and a specific capacitance of 394 F/g, while maintaining 94% capacitance after 5,000 cycles.
  • In a two-electrode configuration, the carbon exhibited excellent energy density (23 W·h/kg) and power density (10,000 W/kg), highlighting its effectiveness as a supercapacitor material.
View Article and Find Full Text PDF

One of the main trends in developing bio-based materials is to improve their mechanical and physical properties using MFC derived from sustainable natural sources and compatible low-cost chemicals. The strength of anionic MFC based materials can be increased with addition of multivalent cations. However, direct mixing of solutions of multivalent cations with oxidized MFC may result in immediate, uncontrollable fibril aggregation and flock formation.

View Article and Find Full Text PDF

The tight organization of major wood cell wall polymers limits the swellability, solubility and reactivity of cellulose fibers during the production of regenerated textile fibers, nanocellulose, bioethanol, and many other value-added products. However, the ultrastructural assembly of cellulose elementary fibrils (EF) and matrix materials in one of the outer layers, i.e.

View Article and Find Full Text PDF

Understanding the chemical structure of lignin in willow bark is an indispensable step to design how to separate its fiber bundles. The whole cell wall and enzyme lignin preparations sequentially isolated from ball-milled bark, inner bark, and wood were comparatively investigated by nuclear magnetic resonance (NMR) spectroscopy and three classical degradative methods, i.e.

View Article and Find Full Text PDF

We report the discovery of the hydrotropic properties of a recyclable aromatic acid, -toluenesulfonic acid (-TsOH), for potentially low-cost and efficient fractionation of wood through rapid and near-complete dissolution of lignin. Approximately 90% of poplar wood (NE222) lignin can be dissolved at 80°C in 20 min. Equivalent delignification using known hydrotropes, such as aromatic salts, can be achieved only at 150°C or higher for more than 10 hours or at 150°C for 2 hours with alkaline pulping.

View Article and Find Full Text PDF

The accessibility and reactivity of cellulose are key parameters in its conversion into various products. Several indirect measures, such as water retention value (WRV), fiber saturation point (FSP) and specific surface area (SSA), are often used to characterize cellulosic samples for their reactivity. In this paper, we report on using oxidation with 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxo-piperidinium cation (4-AcNH-TEMPO) as a probe reaction for the reactivity of cellulose in mild conditions (pH 9, room temperature).

View Article and Find Full Text PDF

Bromide-free TEMPO-catalyzed oxidation of the primary alcohols by sodium hypochlorite (NaOCl) does not proceed without a prior activation of the catalyst. Here were demonstrate an immediate in situ activation of the catalyst with an equimolar addition of chlorine dioxide (ClO) relative to TEMPO. Sodium bromide (NaBr) had a similar role in activating the catalyst although NaBr was needed in excess and the activation took several minutes depending on the dosage of NaBr.

View Article and Find Full Text PDF

The ultrastructural organization of cellulose elementary fibrils (EFs) in wood cell wall is considered to be the prime factor regulating the material characteristics of wood in micro to macro levels and the conversion of delignified wood fibers into various products. Specifically, the complex assembly of EFs in wood cell wall limits its swellability, solubility, and reactivity, for example, in dissolution of cellulose for regeneration of textile fibers, fibril separation for the manufacture of nanocellulose, and enzymatic hydrolysis of cellulose into sugars for their subsequent fermentation to various products, like ethanol for future fossil fuels replacement. Here cryo-transmission electron tomography was applied on ultrathin spruce wood sections to reveal the EF assembly in S layer of the native cell wall.

View Article and Find Full Text PDF

In this work, polarized Raman spectroscopy (PRS) was used to determine orientation maps of crystallites present in Phajus grandifolius starch granules based on the anisotropic response of the glycosidic Raman band at 865cm(-1). The response of this band was preliminarily evaluated using model A-amylose crystals as standard. The A-amylose crystals oriented "in plane" showed a maximal intensity ratio of ∼3.

View Article and Find Full Text PDF

A new (18)F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels-Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[(18)F]fluoro-5-deoxyribose, providing a glycosylated tetrazine derivative with low lipophilicity. The (18)F-tetrazine showed fast reaction kinetics toward the most commonly used dienophiles in IEDDA reactions.

View Article and Find Full Text PDF

A 3D model of the tracheid wall has been proposed based on high-resolution cryo-TEM where, in contrast to the current understanding, the cellulose elementary fibrils protrude from the cell wall plane. The ultrastructure of the tracheid walls of Picea abies was examined through imaging of ultrathin radial, tangential and transverse sections of wood by transmission electron microscopy and with digital image processing. It was found that the elementary fibrils (EFs) of cellulose were rarely deposited in the plane of the concentric cell wall layers, in contrast to the current understanding.

View Article and Find Full Text PDF

A new algorithm for the automatic recognition of peak and baseline regions in spectra is presented. It is part of a study to devise a baseline correction method that is particularly suitable for the simple and fast treatment of large amounts of data of the same type, such as those coming from high-throughput instruments, images, process monitoring, etc. This algorithm is based on the continuous wavelet transform, and its parameters are automatically determined using the criteria of Shannon entropy and the statistical distribution of noise, requiring virtually no user intervention.

View Article and Find Full Text PDF

Fresh birch chips were treated with different concentrations of sodium hydroxide and sodium sulfide in deuterium oxide in typical kraft pulping conditions and the extent of irreversible deuteration of the chips/pulps was followed by Fourier transform infrared (FT-IR) spectroscopy. Water retention values (WRV) of pulps were measured to evaluate accessibility of cellulose. The kraft pulping with deuterium oxide led to significant proton-deuterium exchange that was not reversed when the chips/pulps were washed with water.

View Article and Find Full Text PDF

A facile and effective approach for SERS identification of molecular recognition in Langmuir-Blodgett monolayers on smooth substrates was developed by spreading Ag nanoparticles on ordered alkyl chains in the monolayers, which acted as a spacer layer to separate analytes of interest from direct contact with active substrates.

View Article and Find Full Text PDF

The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation.

View Article and Find Full Text PDF

During various processing treatments, the accessibility of cellulose in cellulosic fibers reduces, which is often interpreted as cellulose microfibril aggregation. This affects the reactivity of cellulose in further processing to novel cellulosic products such as nanocellulose. In this study, the effect of aqueous treatments at elevated temperatures and various pH on accessibility of an oxygen delignified eucalyptus kraft pulp was evaluated by using deuteration combined with Fourier-transform infrared (FT-IR) spectroscopy and water retention value (WRV) test.

View Article and Find Full Text PDF

The systematic evaluation of the degradation of an amorphous cellulose film by a monocomponent endoglucanase (EG I) by using a quartz crystal microbalance with dissipation monitoring (QCM-D) identified several important aspects relevant to the study the kinetics of cellulose degradation by enzymes. It was demonstrated that, to properly evaluate the mechanism of action, steady state conditions in the experimental set up need to be reached. Rinsing or diluting the enzyme, as well as concentration of the enzyme, can have a pronounced effect on the hydrolysis.

View Article and Find Full Text PDF

Wood cell wall consists of several structural components, such as cellulose, hemicelluloses and lignin, whose concentrations vary throughout the cell wall. It is a composite where semicrystalline cellulose fibrils, acting as reinforcement, are bound together by amorphous hemicelluloses and lignin matrix. Understanding the distribution of these components and their functions within the cell wall can provide useful information on the biosynthesis of trees.

View Article and Find Full Text PDF

Ultrastructural alterations of fresh wood caused by initial drying were compared to changes incurred during drying of never-dried wood pulp fibers of different macromolecular composition. Drying induced inaccessibility of a native wood sample exhibited remarkable similarity to wood pulp samples of different lignin contents. The results suggest that the supramolecular rearrangements in native wood matrix upon dehydration are qualitatively identical to the well-known changes occurring in pulp fibers after drying, although the changes are considerably different in quantity.

View Article and Find Full Text PDF

The impact of drying on the ultrastructure of fresh wood was studied by deuterium exchange coupled with FT-IR analysis. This fundamental investigation demonstrated that water removal leads to irreversible alterations of the wood structure, namely, supramolecular rearrangements between wood polymers. The deuteration of fresh wood was shown to be fully reversible by a subsequent exposure of the deuterated sample to water (reprotonation).

View Article and Find Full Text PDF