Publications by authors named "Tapahsama Banerjee"

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation.

View Article and Find Full Text PDF

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation.

View Article and Find Full Text PDF

Unlabelled: Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic variants in the BRCA1 gene significantly increase the risk of hereditary breast and ovarian cancer, with many individuals identified carrying variants of uncertain significance (VUSs) through genetic testing.
  • The study assessed 2,271 and 1,427 BRCA1 variants for their roles in homology-directed repair (HDR) and cisplatin resistance (CR) using multiplexed DNA repair assays, revealing high consistency in results.
  • Findings indicate that functional characteristics of these variants align with known clinical significance, providing valuable resources for understanding BRCA1 VUSs and their impact on tumor suppression.
View Article and Find Full Text PDF

The BARD1 protein, which heterodimerizes with BRCA1, is encoded by a known breast cancer susceptibility gene. While several BARD1 variants have been identified as pathogenic, many more missense variants exist that do not occur frequently enough to assign a clinical risk. In this paper, whole exome sequencing of over 10,000 cancer samples from 33 cancer types identified from somatic mutations and loss of heterozygosity in tumors 76 potentially cancer-associated BARD1 missense and truncation variants.

View Article and Find Full Text PDF

Loss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression.

View Article and Find Full Text PDF

Objective: We analyzed histone deacetylase 10 (HDAC10) for function in the context of the DNA damage response in BRCA1-null ovarian cancer cells as well as evaluated the potential of general HDAC inhibitors in primary ovarian carcinoma cells. HDAC10 had previously been shown to be highly stimulatory to the process of homology directed repair in HeLa cells, and in this study we investigated whether HDAC10 could impact in vitro the response to anticancer therapies. We hypothesized that the loss of HDAC10 would sensitize cells to platinum therapy.

View Article and Find Full Text PDF
Article Synopsis
  • BRCA1 is known primarily for its role in repairing DNA damage, specifically double-strand breaks, but its role in regulating gene transcription is not fully understood.
  • COBRA1, a protein that binds to BRCA1, plays a crucial role in the development of the mouse mammary gland by regulating RNA polymerase II and impacts key processes like ductal morphogenesis and lactogenesis.
  • The study shows that removing Cobra1 leads to developmental issues, but these can be mostly reversed by also removing Brca1, highlighting a non-DNA repair role for BRCA1 in controlling transcription during mammary development.
View Article and Find Full Text PDF

Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer.

View Article and Find Full Text PDF

During mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark.

View Article and Find Full Text PDF

Genes associated with hereditary breast and ovarian cancer (HBOC) are often sequenced in search of mutations that are predictive of susceptibility to these cancer types, but the sequence results are frequently ambiguous because of the detection of missense substitutions for which the clinical impact is unknown. The BARD1 protein is the heterodimeric partner of BRCA1 and is included on clinical gene panels for testing for susceptibility to HBOC. Like BRCA1, it is required for homology-directed DNA repair (HDR).

View Article and Find Full Text PDF

Early steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells, but the SUMOylated targets on the chromatin remained unclear. In this study, we found that SUMO-1 marks the promoters of ribosomal protein genes via modification of the Scaffold Associated Factor B (SAFB) protein, and the SUMOylated SAFB stimulated both the binding of RNA polymerase to promoters and pre-mRNA splicing.

View Article and Find Full Text PDF

NUSAP1 has been reported to function in mitotic spindle assembly, chromosome segregation, and regulation of cytokinesis. In this study, we find that NUSAP1 has hitherto unknown functions in the key BRCA1-regulated pathways of double strand DNA break repair and centrosome duplication. Both these pathways are important for maintenance of genomic stability, and any defects in these pathways can cause tumorigenesis.

View Article and Find Full Text PDF