Publications by authors named "Tapabrata Chakraborti"

It has been shown in recent years that a range of optical diseases have early manifestation in retinal fundus images. It is becoming increasingly important to separate the regions of interest (RoI) upfront in the automated classification pipeline in order to ensure the alignment of the disease diagnosis with clinically relevant visual features. In this work, we introduce Pan-Ret, a semi-supervised framework which starts with locating the abnormalities in the biomedically relevant RoIs of a retinal image in an "annotation-agnostic" fashion.

View Article and Find Full Text PDF
Article Synopsis
  • Deep neural networks (DNNs) simplify complex data through geometric and topological transformations, which are not fully understood for non-smooth activation functions like ReLU.
  • This study suggests that the changes DNNs make during classification are similar to Hamilton's Ricci flow, a mathematical method used to analyze the shape and topology of spaces.
  • By analyzing over 1500 DNN classifiers, the research found that the effectiveness of these geometric transformations is linked to the classifiers' accuracy, highlighting the potential of applying geometric concepts to enhance understanding in deep learning.
View Article and Find Full Text PDF

Monkeypox (Mpox), a zoonotic illness triggered by the monkeypox virus (MPXV), poses a significant threat since it may be transmitted and has no cure. This work introduces a computational method to predict Protein-Protein Interactions (PPIs) during MPXV infection. The objective is to discover prospective drug targets and repurpose current potential Food and Drug Administration (FDA) drugs for therapeutic purposes.

View Article and Find Full Text PDF

Robust segmentation of large and complex conjoined tree structures in 3-D is a major challenge in computer vision. This is particularly true in computational biology, where we often encounter large data structures in size, but few in number, which poses a hard problem for learning algorithms. We show that merging multiscale opening with geodesic path propagation, can shed new light on this classic machine vision challenge, while circumventing the learning issue by developing an unsupervised visual geometry approach (digital topology/morphometry).

View Article and Find Full Text PDF

The traditional method of drug reuse or repurposing has significantly contributed to the identification of new antiviral compounds and therapeutic targets, enabling rapid response to developing infectious illnesses. This article presents an overview of how modern computational methods are used in drug repurposing for the treatment of viral infectious diseases. These methods utilize data sets that include reviewed information on the host's response to pathogens and drugs, as well as various connections such as gene expression patterns and protein-protein interaction networks.

View Article and Find Full Text PDF

Biclustering of biologically meaningful binary information is essential in many applications related to drug discovery, like protein-protein interactions and gene expressions. However, for robust performance in recently emerging large health datasets, it is important for new biclustering algorithms to be scalable and fast. We present a rapid unsupervised biclustering (RUBic) algorithm that achieves this objective with a novel encoding and search strategy.

View Article and Find Full Text PDF

Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary in biomedical applications. We present a novel fuzzy water flow scheme that takes the coarse segmentation output of a base deep learning framework to then provide a more fine-grained and instance level robust segmentation output.

View Article and Find Full Text PDF

Image-based cell phenotyping is an important and open problem in computational pathology. The two principal challenges are: 1) making the cell cluster properties insensitive to experimental settings (like seed point and feature selection) and 2) ensuring that the phenotypes emerging are biologically relevant and support clinical reporting. To gauge robustness, we first compare the consistency of the phenotypes using self-supervised and supervised features.

View Article and Find Full Text PDF

Deep learning enabled medical image analysis is heavily reliant on expert annotations which is costly. We present a simple yet effective automated annotation pipeline that uses autoencoder based heatmaps to exploit high level information that can be extracted from a histology viewer in an unobtrusive fashion. By predicting heatmaps on unseen images the model effectively acts like a robot annotator.

View Article and Find Full Text PDF