The majority of oligodendrogliomas exhibit an intrinsic tendency to develop into malignant high-grade tumors. Angiogenesis is a major factor contributing to the malignant transformation of oligodendroglioma, and its molecular regulatory mechanism needs further study. We provide a case report of an oligodendroglioma patient with two recurrences whose disease progressed from WHO grade II to grade III.
View Article and Find Full Text PDFMetabolism plays crucial roles in the fate decision of human embryonic stem cells (hESCs). Here, we show that the depletion of p53 in hESCs enhances glycolysis and reduces oxidative phosphorylation, and delays mesendoderm differentiation of hESCs. More intriguingly, the disruption of p53 in hESCs leads to dramatic upregulation of phosphatidylcholine and decrease of total choline in both pluripotent and differentiated state of hESCs, suggesting abnormal choline metabolism in the absence of p53.
View Article and Find Full Text PDFThe metabolic switch from oxidative phosphorylation to glycolysis is required for tumorigenesis in order to provide cancer cells with energy and substrates of biosynthesis. Therefore, it is important to elucidate mechanisms controlling the cancer metabolic switch. MTR4 is a RNA helicase associated with a nuclear exosome that plays key roles in RNA processing and surveillance.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) depend on glycolysis for energy and substrates for biosynthesis. To understand the mechanisms governing the metabolism of hESCs, we investigated the transcriptional regulation of glucose transporter 1 (GLUT1, SLC2A1), a key glycolytic gene to maintain pluripotency. By combining the genome-wide data of binding sites of the core pluripotency factors (SOX2, OCT4, NANOG, denoted SON), chromosomal interaction and histone modification in hESCs, we identified a potential enhancer of the GLUT1 gene in hESCs, denoted GLUT1 enhancer (GE) element.
View Article and Find Full Text PDFMetamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis.
View Article and Find Full Text PDF