Publications by authors named "Taoufik El Yandouzi"

Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice.

View Article and Find Full Text PDF

The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland.

View Article and Find Full Text PDF

Growth hormone (GH) exerts its actions via coordinated pulsatile secretion from a GH cell network into the bloodstream. Practically nothing is known about how the network receives its inputs in vivo and releases hormones into pituitary capillaries to shape GH pulses. Here we have developed in vivo approaches to measure local blood flow, oxygen partial pressure, and cell activity at single-cell resolution in mouse pituitary glands in situ.

View Article and Find Full Text PDF

Our view of anterior pituitary organization has been altered with the recognition that folliculo-stellate (FS) and somatotroph cell populations form large-scale three-dimensional homotypic networks. This morphological cellular organization may optimize communication within the pituitary gland promoting coordinated pulsatile secretion adapted to physiological needs. The aim of this study was to identify the molecules involved in the formation and potential functional organization and/or signaling within these cell-cell networks.

View Article and Find Full Text PDF

Growth hormone (GH) secretion decreases spontaneously during lifespan, and the resulting GH deficiency participates in aging-related morbidity. This deficiency appears to involve a defect in the activity of hypothalamic GH-releasing hormone (GHRH) neurons. Here, we investigated this hypothesis, as well as the underlying mechanisms, in identified GHRH neurons from adult ( approximately 13 weeks old) and aged ( approximately 100 weeks old) transgenic GHRH-green fluorescent protein mice, using morphological, biochemical and electrophysiological methods.

View Article and Find Full Text PDF