Publications by authors named "Taotao Gao"

The uncontrolled lithium (Li) dendrite growth significantly impacts the safety performance of polymer separators. To mitigate this growth, this study introduces SiN into sulfonated poly(ether Ether Ketone) (SPEEK) and prepares SiN/SPEEK composite separators via electrospinning. At the interface between the SiN/SPEEK separator and the Li anode, the Si nanowires that form impede Li dendrite growth, thereby enhancing the electrochemical performance of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF
Article Synopsis
  • * A major challenge in traditional water-splitting methods is the slow kinetics of the oxygen evolution reaction (OER), necessitating large energy inputs, increased costs, and potential equipment degradation.
  • * New methods are being explored to enhance hydrogen production efficiency by using alternative anodic reactions that operate at lower potentials and developing robust catalysts, alongside utilizing asymmetric electrolytes to lower energy consumption.
View Article and Find Full Text PDF

Ethnopharmacological Relevance: Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity.

View Article and Find Full Text PDF

The boom of aqueous Zn-based energy storage devices, such as zinc-iodine (Zn-I) batteries, is quite suitable for safe and sustainable energy storage technologies. However, in rechargeable aqueous Zn-I batteries, the shuttle phenomenon of polyiodide ions usually leads to irreversible capacity loss resulting from both the iodine cathode and the zinc anode, and thus impinges on the cycle lifespan of the battery. Herein, a nontoxic, biocompatible, and economical polymer of polyvinyl alcohol (PVA) is exploited as an electrolyte additive.

View Article and Find Full Text PDF

Designing efficient and cost-effective electrocatalysts for overall water splitting remains a major challenge in hydrogen production. Herein, ammonia was introduced to pyrophosphate chelating solution assisted Ni particles preferential plating on porous Fe substrate to form coral-like Ni/NiFe-Pyro electrode. The pyrophosphate with multiple complex sites can couple with nickel and iron ions to form an integrated network structure, which also consists of metallic nickel due to the introduction of ammonia.

View Article and Find Full Text PDF

Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues.

View Article and Find Full Text PDF

The performance of aqueous Zn ion batteries (AZIBs) is hindered by the uncontrollable growth of Zn dendrites and side reactions at the Zn anode/electrolyte interface. Here, we introduce low-cost glucosamine hydrochloride (GLA) into the ZnSO electrolyte system to modulate the Zn anode/electrolyte interface and the solvation structure of Zn, which leads to improved reversibility of Zn plating/striping. Through experimental and theoretical analyses, we demonstrate that GLA molecules could adsorp on the Zn metal surface to form a new interface with reduced active water, effectively suppressing water-induced side reactions.

View Article and Find Full Text PDF

The selective two-electron electrochemical oxygen reduction reaction (ORR) for hydrogen peroxide (HO) production is a promising and green alternative method to the current energy-intensive anthraquinone process used in industry. In this study, we develop a single-atom catalyst (CNT-D-O-Fe) by anchoring defect-stabilized and oxygen-coordinated iron atomic sites (Fe-O) onto porous carbon nanotubes using a local etching strategy. Compared to O-doped CNTs with vacancy defects (CNT-D-O) and oxygen-coordinated Fe single-atom site modifying CNTs without a porous structure (CNT-O-Fe), CNT-D-O-Fe exhibits the highest HO selectivity of 94.

View Article and Find Full Text PDF

In the construction process of an asphalt concrete impermeable core wall, the interlayer bonding of the core wall is the weak link of the core wall structure and also the focus of construction, so it is important to carry out research on the influence of interlayer bonding temperature on the bending performance of an asphalt concrete core wall. In this paper, we study whether asphalt concrete core walls could be treated with cold-bonding by fabricating small beam bending specimens with different interlayer bond temperatures and conducting bending tests on them at 2 °C. The effect of temperature variation on the bending performance of the bond surface under the asphalt concrete core wall is studied through experimental data analysis.

View Article and Find Full Text PDF

Anthropogenic nitrate pollution has an adverse impact on the environment and human health. As part of a sustainable nitrate management strategy, electrochemical denitrification is studied as an innovative strategy for nutrients recycling and recovering. It is, however, challenging to selectively electro-reduce nitrate with low-concentration for ammonia.

View Article and Find Full Text PDF

The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/FeC particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process.

View Article and Find Full Text PDF

Aqueous rechargeable Ni/Fe batteries are appropriate energy storage devices for portable and wearable electronics due to their outstanding safety and cost-effectiveness. However, their energy storage properties are limited by the sluggish kinetics of iron-based anodes. Herein, we design and construct a high-performance iron-based material with a hierarchical structure developed by electrodepositing iron oxide (FeO) nanosheets on titanium carbide (TiCT) MXene nanoplates modified carbon fiber (3D-MXene/FeO).

View Article and Find Full Text PDF

The use of gel thermoelectric chemical cells to capture low-grade heat for conversion to electricity is an attractive approach. However, there are few studies on whether the distribution of redox species in the electrolyte has an effect on the performance of cells. Herein, this concern was discussed by constructing a novel gel thermoelectric chemical cell (Cu-C-cg).

View Article and Find Full Text PDF

Developing low-cost electrocatalysts with excellent activity is significant for accelerating the slow oxygen evolution reaction (OER). In this work, an effective electrocatalyst is prepared via the cross-linked effect and reconstruction strategy based on inexpensive transition metals (Fe, Co, and Ni) and phytic acid (PA). The feasibility of utilizing the cross-linked effect and reconstruction strategy is due to that PA molecules with strongly electronegative phosphoric acid groups possess a great deal of complexing sites, which can facilitate the formation of large cross-linked network by randomly complexing Fe, Co and Ni ions.

View Article and Find Full Text PDF

Aqueous Ni/Fe alkaline batteries with features of low cost and high safety show great potential for application in portable and wearable electronics. However, the poor kinetics of the Fe-based anode greatly limits the large-scale applications of Ni/Fe batteries. Herein, we report an interconnected 3D conductive network with carbon-coated nanostructured iron/iron oxide (3D-Fe/FeO@C) as an efficient anode for a flexible Ni/Fe battery.

View Article and Find Full Text PDF

Background: Prolonged air leak (PAL) is one of the most common postoperative complications after lung surgery. This study aimed to identify risk factors of PAL after lung resection and develop a preoperative predictive model to estimate its risk for individual patients.

Methods: Patients with pulmonary malignancies or metastasis who underwent pulmonary resection between January 2014 and January 2018 were included.

View Article and Find Full Text PDF

The search for ultrafast and simple methods to fabricate non-noble metal catalysts to boost electrocatalytic oxygen reduction reaction (ORR) is still ongoing. Herein, we demonstrate a one-step microwave-assisted heating method to prepare copper nitride/iron/iron carbide nanoparticle hybrids (CuNC/Fe/FeC/CNT). This ultrafast heating method induces plentiful carbon-wrapped metal and FeC nanoparticles that are attached to the surface of CNT and scattered nanosheets.

View Article and Find Full Text PDF

Chiral tertiary boronic esters are important precursors to bioactive compounds and versatile synthetic intermediates to molecules containing quaternary stereocenters. The development of conjugate boryl addition to α,β-unsaturated amide has been hampered by the intrinsic low electrophilicity of the amide group. Here we show the catalytic asymmetric synthesis of enantioenriched tertiary boronic esters through hydroboration of β,β-disubstituted α,β-unsaturated amides.

View Article and Find Full Text PDF

We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.

View Article and Find Full Text PDF

Electrodeposition is an effective method to prepare various materials. We have established a bipolar electrodeposition system assisted by a constant magnetic field to fabricate a Co/Fe/Ni phytate catalyst with good electrocatalytic activity for overall water splitting. The effects of magnetic and electric fields on the catalytic properties of the material were studied.

View Article and Find Full Text PDF

The control of chemo-, regio-, diastereo-, and enantioselectivity is a central theme in organic synthesis. The capability to obtain the full set of stereoisomers of a molecule would significantly enhance the efficiency for the synthesis of natural product analogues and creation of chiral compound libraries for drug discovery. Despite the tremendous progress achieved in the field of asymmetric synthesis in the past decades, the precise control of both relative and absolute configurations in catalyst-controlled reactions that create multiple stereocenters remains a significant synthetic challenge.

View Article and Find Full Text PDF

Fiber supercapacitors (FSCs) are promising energy storage devices in portable and wearable smart electronics. Currently, a major challenge for FSCs is simultaneously achieving high volumetric energy and power densities. Herein, the microscale fiber electrode is designed by using carbon fibers as substrates and capillary channels as microreactors to space-confined hydrothermal assembling.

View Article and Find Full Text PDF

A catalytic macrolactonization through oxidative cyclization of alkynyl alcohol by synergistic transition-metal and Lewis-acid catalysis was developed. Because the alkynyl alcohol substrates involved in this method are different from the seco acids that are used in conventional macrolactonization methods, the current method provides a strategically distinct entry to macrolactones. In addition to the operational simplicity, this macrolactonization protocol proceeds at relatively high concentration, precluding the need for high dilution or slow addition procedures.

View Article and Find Full Text PDF