Prog Neuropsychopharmacol Biol Psychiatry
December 2021
Although accumulating neuroimaging studies have reported that social behavior deficits in children with autism spectrum disorders (ASD) are commonly attributed to the dysfunction of social brain regions underlying social cognition, the dynamic interaction within the social brain network and its association with social deficits remain unclear. Here, resting-state functional magnetic resonance imaging data obtained from Autism Brain Imaging Data Exchange (I and II) were analyzed in 105 children with ASD and 102 demographically matched typically developing controls (TDCs) (age range: 7-12 years old). Term-based meta-analysis combined the prior reference and anatomical labeling were used to define the regions of interests of the social brain network, and multivariate Granger causality analysis with blind deconvolution was employed to assess the effective connectivity within the social brain network in the ASD and TDC groups.
View Article and Find Full Text PDFAccumulating neuroimaging evidence suggests that abnormal functional connectivity of the default mode network (DMN) contributes to the social-cognitive deficits of autism spectrum disorder (ASD). Although most previous studies relied on conventional functional connectivity methods, which assume that connectivity patterns remain constant over time, understanding the temporal dynamics of functional connectivity during rest may provide new insights into the dysfunction of the DMN in ASD. In this work, dynamic functional connectivity analysis based on sliding time window correlation was applied to the resting-state functional magnetic resonance imaging data of 28 young children with ASD (age range: 3-7 years) and 29 matched typically developing controls (TD group).
View Article and Find Full Text PDF