IEEE J Biomed Health Inform
August 2024
This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-modal features using deep learning algorithms. These features include 3D structural properties at the nucleotide base level of the RNA molecule, relational graphs based on overall RNA structure, and rich RNA semantic information.
View Article and Find Full Text PDFMotivation: Binding of peptides to major histocompatibility complex (MHC) molecules plays a crucial role in triggering T cell recognition mechanisms essential for immune response. Accurate prediction of MHC-peptide binding is vital for the development of cancer therapeutic vaccines. While recent deep learning-based methods have achieved significant performance in predicting MHC-peptide binding affinity, most of them separately encode MHC molecules and peptides as inputs, potentially overlooking critical interaction information between the two.
View Article and Find Full Text PDFPhosphorylation, as one of the most important post-translational modifications, plays a key role in various cellular physiological processes and disease occurrences. In recent years, computer technology has been gradually applied to the prediction of protein phosphorylation sites. However, most existing methods rely on simple protein sequence features that provide limited contextual information.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
December 2023
Accurate identification of RNA modification sites is of great significance in understanding the functions and regulatory mechanisms of RNAs. Recent advances have shown great promise in applying computational methods based on deep learning for accurate prediction of RNA modifications. However, those methods generally predicted only a single type of RNA modification.
View Article and Find Full Text PDFMotivation: Accurate and rapid prediction of protein-ligand binding affinity is a great challenge currently encountered in drug discovery. Recent advances have manifested a promising alternative in applying deep learning-based computational approaches for accurately quantifying binding affinity. The structure complementarity between protein-binding pocket and ligand has a great effect on the binding strength between a protein and a ligand, but most of existing deep learning approaches usually extracted the features of pocket and ligand by these two detached modules.
View Article and Find Full Text PDFMany computational methods have been proposed to predict drug-drug interactions (DDIs), which can occur when combining drugs to treat various diseases, but most mainly utilize single-source features of drugs, which is inadequate for drug representation. To fill this gap, we propose two attention-mechanism-based encoder-decoder models that incorporate multisource information: one is MAEDDI, which can predict DDIs, and the other is MAEDDIE, which can make further DDI-associated event predictions for drug pairs with DDIs. To better express the drug feature, we used three encoding methods to encode the drugs, integrating the self-attention mechanism, cross-attention mechanism, and graph attention network to construct a multisource feature fusion network.
View Article and Find Full Text PDF