Light-absorbing organic aerosols, referred to as brown carbon (BrC), play a vital role in the global climate and air quality. Due to the complexity of BrC chromophores, the identified absorbing substances in the ambient atmosphere are very limited. However, without comprehensive knowledge of the complex absorbing compounds in BrC, our understanding of its sources, formation, and evolution mechanisms remains superficial, leading to great uncertainty in climatic and atmospheric models.
View Article and Find Full Text PDFSci Total Environ
November 2022
Biomass burning emits large quantities of phenols, which readily partition into the atmospheric aqueous phase and subsequently may react to produce aqueous secondary organic aerosol (aqSOA). For the first time, we quantitatively explored the influence of phenols emitted from biomass burning on aqSOA formation in the winter of Beijing. A typical haze episode associated with significant aqSOA formation was captured.
View Article and Find Full Text PDFSci Total Environ
March 2022
Atmospheric particles are important reaction vessels for multiphase chemistry. We conducted a meta-analysis of previous field observations in various environments (includes ocean, urban and rural regions), showing that particle hygroscopicity inhomogeneity (PHI) is ubiquitous for the continental atmospheric particles, in which a considerable part of the particulate matters is hydrophobic (10%-33% on average). However, the effects of PHI in quantifying the uptake process of reactive gases are still unclear.
View Article and Find Full Text PDFThe annual mean PM mass concentration has decreased because of the stringent emission controls implemented in Beijing, China in recent years, whereas the nitrate NO mass fraction in PM increases gradually. Low-visibility events occur frequently even though PM pollution has been mitigated significantly, with the daily mean PM mass concentration mostly less than 75 μg/m. In this study, the non-linear relationship was analyzed between atmospheric visibility and PM based on chemical composition from a two-year field observation.
View Article and Find Full Text PDFThe phase state of biomass burning aerosols (BBA) remains largely unclear, impeding our understanding of their effects on air quality, climate and human health, due to its profound roles in mass transfer between gaseous and particulate phase. In this study, the phase state of BBA was investigated by measuring the particle rebound fraction ƒ combining field observations and laboratory experiments. We found that both ambient and laboratory-generated BBA had unexpectedly lower rebound fraction ƒ (<0.
View Article and Find Full Text PDFLinks between the optical properties and chemical compositions of brown carbon (BrC) are poorly understood because of the complexity of BrC chromophores. We conducted field studies simultaneously at both vehicle-influenced site and biomass burning-affected site in China in polluted winter. The chemical compositions and light absorption values of functionalized aromatic compounds, including phenyl aldehyde, phenyl acid, and nitroaromatic compounds, were measured.
View Article and Find Full Text PDFEnviron Sci Technol
January 2021
The phase states of primarily emitted and secondarily formed aerosols from gasoline vehicle exhausts were investigated by quantifying the particle rebound fraction (). The rebound behaviors of gasoline vehicle emission-related aerosols varied with engines, fuel types, and photochemical aging time, showing distinguished differences from biogenic secondary organic aerosols. The nonliquid-to-liquid phase transition of primary aerosols emitted from port fuel injection (PFI) and gasoline direct injection (GDI) vehicles started at a relative humidity (RH) = 50 and 60%, and liquefaction was accomplished at 60 and 70%, respectively.
View Article and Find Full Text PDF