Functional connectivity (FC) networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used in automated identification of brain disorders, such as Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). To generate compact representations of FC networks, various thresholding methods have been designed for FC network analysis. However, these studies usually use a pre-defined threshold or connection percentage to threshold whole FC networks, thus ignoring the diversity of temporal correlation (e.
View Article and Find Full Text PDF