Publications by authors named "Tanzil Mahmud Arefin"

Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats.

View Article and Find Full Text PDF

Diffusion magnetic resonance imaging (dMRI) tractography has yielded intriguing insights into brain circuits and their relationship to behavior in response to gene mutations or neurological diseases across a number of species. Still, existing tractography approaches suffer from limited sensitivity and specificity, leading to uncertain interpretation of the reconstructed connections. Hence, in this study, we aimed to optimize the imaging and computational pipeline to achieve the best possible spatial overlaps between the tractography and tracer-based axonal projection maps within the mouse brain corticothalamic network.

View Article and Find Full Text PDF

Diffusion MRI (dMRI) tractography is the only tool for non-invasive mapping of macroscopic structural connectivity over the entire brain. Although it has been successfully used to reconstruct large white matter tracts in the human and animal brains, the sensitivity and specificity of dMRI tractography remained limited. In particular, the fiber orientation distributions (FODs) estimated from dMRI signals, key to tractography, may deviate from histologically measured fiber orientation in crossing fibers and gray matter regions.

View Article and Find Full Text PDF

Background: Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol.

View Article and Find Full Text PDF

Translational work in rodents elucidates basic mechanisms that drive complex behaviors relevant to psychiatric and neurological conditions. Nonetheless, numerous promising studies in rodents later fail in clinical trials, highlighting the need for improving the translational utility of preclinical studies in rodents. Imaging of small rodents provides an important strategy to address this challenge, as it enables a whole-brain unbiased search for structural and dynamic changes that can be directly compared to human imaging.

View Article and Find Full Text PDF

Diffusion Magnetic Resonance Imaging (dMRI) has shown great potential in probing tissue microstructure and structural connectivity in the brain but is often limited by the lengthy scan time needed to sample the diffusion profile by acquiring multiple diffusion weighted images (DWIs). Although parallel imaging technique has improved the speed of dMRI acquisition, attaining high resolution three dimensional (3D) dMRI on preclinical MRI systems remained still time consuming. In this paper, kernel principal component analysis, a machine learning approach, was employed to estimate the correlation among DWIs.

View Article and Find Full Text PDF

Backgound: Alcohol use disorder (AUD) is devastating and poorly treated, and innovative targets are actively sought for prevention and treatment. The orphan G protein-coupled receptor GPR88 is enriched in mesocorticolimbic pathways, and Gpr88 knockout mice show hyperactivity and risk-taking behavior, but a potential role for this receptor in drug abuse has not been examined.

Methods: We tested Gpr88 knockout mice for alcohol-drinking and -seeking behaviors.

View Article and Find Full Text PDF

Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals.

View Article and Find Full Text PDF