Background: This is the case report of a synchronous anal canal cancer and cervical cancer in a patient who underwent definitive chemoradiotherapy (CRT) and radical surgery for anal canal and cervical carcinoma, respectively.
Case Report: A 55-year-old woman was diagnosed with cT4a cN1 Mx anal canal squamous cell carcinoma and stage IA2 cervical squamous cell carcinoma, based on biopsy and imaging. Definitive CRT consisted of radiotherapy (total dose of 59.
Objective: To assess evidence on the efficacy of adjuvant human papillomavirus (HPV) vaccination in patients treated for HPV-related disease across different susceptible organ sites.
Methods: A systematic review was conducted to identify studies addressing the efficacy of adjuvant HPV vaccination on reducing the risk of recurrence of HPV-related preinvasive diseases. Results were reported as mean differences or pooled odds ratios (OR) with 95% confidence intervals (95% CI).
Objective: To assess the current framework of interventional and diagnostic neuroradiology in Europe METHODS: The UEMS (European Union of Medical Specialists) Section of Radiology and the subspecialty UEMS Division of Neuroradiology collected by e-mail a survey on the situation of diagnostic and Interventional Neuroradiology' training and practice in Europe. The questionnaire was sent to the national delegates from 31 UEMS member countries, belonging to the European Union, the European Economic Area and the Council of Europe. In case of uncertain or discordant replies, the survey envisaged the involvement of neuroradiology scientific societies' experts for providing a decisive answer.
View Article and Find Full Text PDFObjectives: Chronic obstructive pulmonary disease (COPD) is associated with a higher risk of pulmonary infections. This risk not only negatively affects patients' quality of life but also increases social and health costs. Hence, there is a need for an effective rehabilitative treatment including airway clearance.
View Article and Find Full Text PDFBasal forebrain neurons increase cortical blood flow by releasing acetylcholine (Ach), which stimulates endothelial cells (ECs) to produce the vasodilating gasotransmitter, nitric oxide (NO). Surprisingly, the mechanism whereby Ach induces NO synthesis in brain microvascular ECs is unknown. An increase in intracellular Ca concentration recruits a multitude of endothelial Ca-dependent pathways, such as Ca/calmodulin endothelial NO synthase (eNOS).
View Article and Find Full Text PDFBeractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques.
View Article and Find Full Text PDFStim1 and Orai1 are ubiquitous proteins that have long been known to mediate Ca(2+) release-activated Ca(2+) (CRAC) current (ICRAC) and store-operated Ca(2+) entry (SOCE) only in non-excitable cells. SOCE is activated following the depletion of the endogenous Ca(2+) stores, which are mainly located within the endoplasmic reticulum (ER), to replete the intracellular Ca(2+) reservoir and engage specific Ca(2+)-dependent processes, such as proliferation, migration, cytoskeletal remodeling, and gene expression. Their paralogs, Stim2, Orai2 and Orai3, support SOCE in heterologous expression systems, but their physiological role is still obscure.
View Article and Find Full Text PDFStore-operated Ca(2+) entry (SOCE) is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca(2+) pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca(2+) levels within the endoplasmic reticulum (ER) Ca(2+) reservoir, and a number of a Ca(2+)-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1-7) family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC) patients.
View Article and Find Full Text PDFHydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca(2+) concentration ([Ca(2+)]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca(2+) signals in endothelial cells is unclear.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) are mobilized into circulation to replace damaged endothelial cells and recapitulate the vascular network of injured tissues. Intracellular Ca(2+) signals are key to EPC activation, but it is yet to be elucidated whether they are endowed with the same blend of Ca(2+) -permeable channels expressed by mature endothelial cells. For instance, endothelial colony forming cells (ECFCs), the only EPC subset truly committed to acquire a mature endothelial phenotype, lack canonical transient receptor potential channels 3, 5 and 6 (TRPC3, 5 and 6), which are widely distributed in vascular endothelium; on the other hand, they express a functional store-operated Ca(2+) entry (SOCE).
View Article and Find Full Text PDFBackground: An increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs).
View Article and Find Full Text PDFPlatelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry.
View Article and Find Full Text PDFEndothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization.
View Article and Find Full Text PDFBackground: Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca²⁺ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca²⁺ inflow is, however, unknown.
View Article and Find Full Text PDFRather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs).
View Article and Find Full Text PDFThe term "angiogenic switch" describes one of the earlier events of tumorigenesis, that occurs when the balance between pro-and anti-angiogenic factors shifts towards a pro-angiogenic outcome. This leads to the transition from a microscopic indolent lesion to a macroscopic and vascularised primary tumor, that may eventually metastasize and spread to distant sites. The molecular mechanisms underlying such a critical step in the carcinogenetic process have been extensively investigated.
View Article and Find Full Text PDFEndothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i).
View Article and Find Full Text PDFBackground: Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca(2+) entry (SOCE), which is activated by a depletion of the intracellular Ca(2+) pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca(2+)-sensor, Stim1, and the plasmalemmal Ca(2+) channel, Orai1.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) have recently been employed in cell-based therapy (CBT) to promote neovascularization and regeneration of ischemic organs, such as heart and limbs. Furthermore, EPCs may be recruited from bone marrow by growing tumors to drive the angiogenic switch through physical engrafting into the lumen of nascent vessels or paracrine release of pro-angiogenic factors. CBT is hampered by the paucity of EPCs harvested from peripheral blood and suffered from several pitfalls, including the differentiation outcome of transplanted cells and low percentage of engrafted cells.
View Article and Find Full Text PDFA monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca(2+) signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) have recently been employed in cell-based therapy (CBT) to promote regeneration of ischemic organs, such as heart and limbs. Furthermore, EPCs may sustain tumour vascularisation and provide an additional target for anticancer therapies. CBT is limited by the paucity of cells harvested from peripheral blood and suffers from several pitfalls, including the low rate of engrafted EPCs, whereas classic antiangiogenic treatments manifest a number of side effects and may induce resistance into the patients.
View Article and Find Full Text PDFEndothelial injury is the primary event that leads to a variety of severe vascular disorders. Mechanical injury elicits a Ca(2+) response in the endothelium of excised rat aorta, which comprises an initial Ca(2+) release from inositol-1,4,5-trisphosphate (InsP(3))-sensitive stores followed by a long-lasting decay phase due to Ca(2+) entry through uncoupled connexons. The Ca(2+) signal may also adopt an oscillatory pattern, the molecular underpinnings of which are unclear.
View Article and Find Full Text PDFIonotropic purinergic receptors (P2X) are expressed in endothelial and smooth muscle cells of blood vessels. ATP acting on smooth muscle P2X receptors is able to induce vasoconstriction in different kind of vessels. However, to our knowledge, there are no reports that directly show the activity of these purinergic receptors in native human vascular smooth muscle cells.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca(2+) signals regulate numerous endothelial functions, such as proliferation and tubulogenesis.
View Article and Find Full Text PDFHydrogen sulfide (H(2)S) is a gasotransmitter that plays several roles in various tissues, including the cardiovascular system. Because it has been recently proposed to act as a mediator of angiogenesis progression, here we investigate the effects of H(2)S in a well-established model of tumor angiogenesis: endothelial cells obtained from human breast carcinoma (B-TECs). Ca(2+) imaging and patch-clamp experiments reveal that acute perfusion with NaHS, a widely employed H(2)S donor, activates cytosolic calcium (Ca(c)) increase, as well as potassium and nonselective cationic currents, in B-TECs.
View Article and Find Full Text PDF