Publications by authors named "Tanya Y BergerWolf"

Understanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize data obtained using calcium imaging of spontaneous activity of neurons in a mouse brain slice as well as in vivo using two-photon imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces the community dynamic inference method (CommDy) as a novel analytical tool for neuroimaging data, specifically applied to understanding changes in brain networks due to aging in mice.
  • Using CommDy, researchers found that auditory cortical networks in aged mice were significantly more fragmented than those in younger mice, indicating alterations in network connectivity associated with aging.
  • Similar declines in network connectivity were also seen in the awake motor cortex, hinting that the changes observed in auditory cortex networks might reflect broader aging processes in the brain.
View Article and Find Full Text PDF

Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we provide evidence that "open-loop" intrathalamic pathways involving the thalamic reticular nucleus (TRN) can support propagation of oscillatory activity across the cortex.

View Article and Find Full Text PDF

Understanding why animal societies take on the form that they do has benefited from insights gained by applying social network analysis to patterns of individual associations. Such analyses typically aggregate data over long time periods even though most selective forces that shape sociality have strong temporal elements. By explicitly incorporating the temporal signal in social interaction data we re-examine the network dynamics of the social systems of the evolutionarily closely-related Grevy's zebras and wild asses that show broadly similar social organizations.

View Article and Find Full Text PDF

The form of animal social systems depends on the nature of agonistic and affiliative interactions. Social network theory provides tools for characterizing social structure that go beyond simple dyadic interactions and consider the group as a whole. We show three groups of capuchin monkeys from Barro Colorado Island, Panama, where there are strong connections between key aspects of aggression, grooming, and proximity networks, and, at least among females, those who incur risk to defend their group have particular "social personalities.

View Article and Find Full Text PDF

While full-sibling group reconstruction from microsatellite data is a well-studied problem, reconstruction of half-sibling groups is much less studied, theoretically challenging, and computationally demanding. In this paper, we present a formulation of the half-sibling reconstruction problem and prove its APX-hardness. We also present exact solutions for this formulation and develop heuristics.

View Article and Find Full Text PDF

Kinship analysis using genetic data is important for many biological applications, including many in conservation biology. Wide availability of microsatellites has boosted studies in wild populations that rely on the knowledge of kinship, particularly sibling relationships (sibship). While there exist many methods for reconstructing sibling relationships, almost none account for errors and mutations in microsatellite data, which are prevalent and affect the quality of reconstruction.

View Article and Find Full Text PDF

Reconstruction of sibling relationships from genetic data is an important component of many biological applications. In particular, the growing application of molecular markers (microsatellites) to study wild populations of plant and animals has created the need for new computational methods of establishing pedigree relationships, such as sibgroups, among individuals in these populations. Most current methods for sibship reconstruction from microsatellite data use statistical and heuristic techniques that rely on a priori knowledge about various parameter distributions.

View Article and Find Full Text PDF

We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics.

View Article and Find Full Text PDF