Publications by authors named "Tanya V Kalin"

Article Synopsis
  • Mutations in the FOXF1 gene cause a lethal lung disease called Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, particularly impacting newborns and infants.
  • The research focuses on identifying new regulatory elements upstream of FOXF1, which are linked to frequent non-coding deletions associated with the disease.
  • Through advanced techniques like multiome single-nuclei RNA and ATAC sequencing, the study uncovers four key enhancers for FOXF1 in specific cell types, revealing their role in the disease's pathology and clarifying how these deletions contribute to its development.
View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs.

View Article and Find Full Text PDF

Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants.

View Article and Find Full Text PDF

Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition.

View Article and Find Full Text PDF

Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved.

View Article and Find Full Text PDF

Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition.

View Article and Find Full Text PDF

Forkhead Box F1 (FOXF1) transcription factor plays a critical role in lung angiogenesis during embryonic development and lung repair after injury. FOXF1 expression is decreased in endothelial cells after lung injury; however, molecular mechanisms responsible for the FOXF1 transcript changes in injured lung endothelium remain unknown. We used immunostaining of injured mouse lung tissues, FACS-sorted lung endothelial cells from hypoxia-treated mice, and data from patients diagnosed with hypoxemic respiratory failure to demonstrate that hypoxia is associated with decreased FOXF1 expression.

View Article and Find Full Text PDF

Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body.

View Article and Find Full Text PDF

Vascular remodeling and compromised alveolar development are hallmarks of chronic pulmonary diseases such as bronchopulmonary dysplasia (BPD). Despite advances in neonatal healthcare the number of BPD cases worldwide continues to increase. One approach to overcoming the premature arrest in lung development seen in BPD is to stimulate neonatal angiogenesis via delivery and engraftment of endothelial progenitor cells (EPCs).

View Article and Find Full Text PDF

Background And Purpose: Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONV) to ultrahigh dose-rate proton therapy, FLASH, in a mouse model of non-small cell lung cancers (NSCLC).

View Article and Find Full Text PDF

Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1.

View Article and Find Full Text PDF

The FOXM1 transcription factor exhibits pleiotropic C-terminal transcriptional and N-terminal non-transcriptional functions in various biological processes critical for cellular homeostasis. We previously found that FOXM1 repression during cellular aging underlies the senescence phenotypes, which were vastly restored by overexpressing transcriptionally active FOXM1. Yet, it remains unknown whether increased expression of FOXM1 can delay organismal aging.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients.

View Article and Find Full Text PDF

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Identify-small molecule compounds that stimulate FOXF1 signaling.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how bone marrow can be generated from embryonic stem cells (ESCs) to enhance cell therapies for severe diseases, addressing existing technical limitations.
  • Using blastocyst complementation, researchers successfully produced various hematopoietic and stromal cell types from mouse ESCs in rat embryos, matching normal mouse bone marrow cell characteristics.
  • The findings highlighted efficient development of mouse hematopoietic stem cells (HSCs) in mouse-rat chimeras, demonstrating their potential for long-term reconstitution and successful transplantation in lethally irradiated mice.
View Article and Find Full Text PDF

Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs.

View Article and Find Full Text PDF

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census.

View Article and Find Full Text PDF

A major challenge in cancer therapy is to achieve high cell targeting specificity for the highest therapeutic efficacy. Two major approaches have been shown to be quite effective, namely, (1) bio-marker mediated cell targeting, and (2) electrical charge driven cell binding. The former utilizes the tumor-specific moieties on nano carrier surfaces for active targeting, while the latter relies on nanoparticles binding onto the cancer cell surfaces due to differences in electrical charge.

View Article and Find Full Text PDF

Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and antiinflammatory drugs have improved clinical management of preterm infants, those who suffer with severe vascular complications still lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of infants with ACDMPV.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy.

Methods: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in mice carrying the mutation (identified in patients with ACDMPV).

View Article and Find Full Text PDF

Although pulmonary endothelial progenitor cells (EPCs) hold promise for cell-based therapies for neonatal pulmonary disorders, whether EPCs can be derived from pluripotent embryonic stem cells (ESCs) or induced pluripotent stem cells remains unknown. To investigate the heterogeneity of pulmonary EPCs and derive functional EPCs from pluripotent ESCs. Single-cell RNA sequencing of neonatal human and mouse lung was used to identify the heterogeneity of pulmonary EPCs.

View Article and Find Full Text PDF

, the most common fusion gene in Ewing sarcoma, upregulates expression of the Eyes Absent 3 (EYA3) transactivator-phosphatase protein. The purpose of this study was to investigate molecular and cellular mechanisms through which EYA3 might promote Ewing sarcoma tumor growth and to determine whether the EYA3 tyrosine phosphatase activity represents a viable therapeutic target. We used genetic and pharmacologic modulation of EYA3 in cell line-based xenografts to examine how loss of EYA3 tyrosine phosphatase activity affects tumor growth and angiogenesis.

View Article and Find Full Text PDF

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis.

View Article and Find Full Text PDF

Background: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos.

Results: While Nkx2-1 mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1 mice.

View Article and Find Full Text PDF