This commentary describes the creation of a microbiology-themed Monopoly™ gameboard assignment for studying microbial diversity. Students worked in groups to redesign the standard Monopoly™ playing tokens, currency, action cards, properties, and special spaces for any microbial-themed topic using a provided template. A postassignment anonymous survey found that the students enjoyed this assignment and the opportunity to share their knowledge in a unique and creative format.
View Article and Find Full Text PDFThe indole-alkaloid scytonemin is a sunscreen pigment that is widely produced among cyanobacteria as an ultraviolet radiation (UVR) survival strategy. Scytonemin biosynthesis is encoded by two gene clusters that are known to be induced by long-wavelength radiation (UVA). Previous studies have characterized the transcriptome of cyanobacteria in response to a wide range of conditions, but the effect on the expression of scytonemin biosynthesis genes has not been specifically targeted.
View Article and Find Full Text PDFResearch on the UVA, UVB and oxidative (as reactive oxygen species, ROS) stress response in cyanobacteria has typically focused on each individual stress condition, with limited studies addressing the intersection. Here, we evaluated the transcriptomic responses of the model cyanobacterium Nostoc punctiforme after exposure to each of these conditions. Overall, response to UVA was characterized by more gene down-regulation than the UVB or ROS response, although UVB affected over fourfold more genes than UVA or ROS.
View Article and Find Full Text PDFThe biosynthesis of the unique cyanobacterial (oxyphotobacterial) indole-phenolic UVA sunscreen, scytonemin, is coded for in a conserved operon that contains both core metabolic genes and accessory, aromatic amino acid biosynthesis genes dedicated to supplying scytonemin's precursors. Comparative genomics shows conservation of this operon in many, but not all, cyanobacterial lineages. Phylogenetic analyses of the operon's aromatic amino acid genes indicate that five of them were recruited into the operon after duplication events of their respective housekeeping cyanobacterial cognates.
View Article and Find Full Text PDFThe gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure.
View Article and Find Full Text PDFSome cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress.
View Article and Find Full Text PDFSilver nanoparticles (NPs) are the largest and fastest growing category of nanotechnology-based medicines and consumer products. Silver can have great toxicity to some aquatic organisms and, as a biocidal agent, may also damage or alter the most abundant and vulnerable beneficial microorganisms in the environment, such as Gordonia sp. However, considering the complex chemical background of natural waters, silver NPs can have complicated interactions with background chemicals such as chloride, surfactants, and dissolved natural organic matters (NOM).
View Article and Find Full Text PDFFollowing exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation.
View Article and Find Full Text PDFLong-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133.
View Article and Find Full Text PDFMicroalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems.
View Article and Find Full Text PDFCyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures.
View Article and Find Full Text PDFBackground: The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin.
View Article and Find Full Text PDFUnder exposure to UV radiation, some cyanobacteria synthesize sunscreen compounds. Scytonemin is a heterocyclic indole-alkaloid sunscreen, the synthesis of which is induced upon exposure to UVA (long-wavelength UV) radiation. We previously identified and characterized an 18-gene cluster associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133; we now report on the expression response of these genes to a step-up shift in UVA exposure.
View Article and Find Full Text PDFThe indole-alkaloid scytonemin is the most common and widespread sunscreen among cyanobacteria. Previous research has focused on its nature, distribution, ecology, physiology, and biochemistry, but its molecular genetics have not been explored. In this study, a scytonemin-deficient mutant of the cyanobacterium Nostoc punctiforme ATCC 29133 was obtained by random transposon insertion into open reading frame NpR1273.
View Article and Find Full Text PDF