Publications by authors named "Tanya Shaw"

Collective alignment of cell populations is a commonly observed phenomena in biology. An important example are aligning fibroblasts in healthy or scar tissue. In this work we derive and simulate a mechanistic agent-based model of the collective behaviour of actively moving and interacting cells, with a focus on understanding collective alignment.

View Article and Find Full Text PDF

Keloids are a severe form of scarring for which the underlying mechanisms are poorly understood, and treatment options are limited or inconsistent. Although biomechanical forces are potential drivers of keloid scarring, the direct cellular responses to mechanical cues have yet to be defined. The aim of this study was to examine the distinct responses of normal dermal fibroblasts and keloid-derived fibroblasts (KDFs) to changes in extracellular matrix stiffness.

View Article and Find Full Text PDF

Many biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity.

View Article and Find Full Text PDF

Physical medicine and rehabilitation physicians often care for disabled patients, who comprise America's largest marginalized population. Despite medical students' and physicians' discomfort with caring for disabled patients and the pervasiveness of ableism in health care, medical education lacks disability-focused education. Kern's approach to curriculum development and disability community input were used to design a three-part, elective curriculum for first-year medical students.

View Article and Find Full Text PDF

Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts.

View Article and Find Full Text PDF

Fibrosis is associated with dramatic changes in extracellular matrix (ECM) architecture of unknown etiology. Here we exploit keloid scars as a paradigm to understand fibrotic ECM organization. We reveal that keloid patient fibroblasts uniquely produce a globally aligned ECM network in 2-D culture as observed in scar tissue.

View Article and Find Full Text PDF

Dermatofibromas (DFs) are common, benign fibrous skin tumors that can occur at any skin site. In most cases, DFs are solitary and sporadic, but a few are multiple and familial, and the mechanisms leading to these lesions are currently unclear. Using exome sequencing, we have identified a heterozygous variant in a pedigree with autosomal dominant multiple familial DF within RND3 (c.

View Article and Find Full Text PDF

Multicellular tumour cell spheroids embedded within three-dimensional (3D) hydrogels or extracellular matrices (ECM) are widely used as models to study cancer growth and invasion. Standard methods to embed spheroids in 3D matrices result in random placement in space which limits the use of inverted fluorescence microscopy techniques, and thus the resolution that can be achieved to image molecular detail within the intact spheroid. Here, we leverage UV photolithography to microfabricate PDMS (polydimethylsiloxane) stamps that allow for generation of high-content, reproducible well-like structures in multiple different imaging chambers.

View Article and Find Full Text PDF

Importance: Keloids and hypertrophic scars (excessive scarring) are relatively understudied disfiguring chronic skin conditions with high treatment resistance.

Objective: To evaluate established comorbidities of excessive scarring in European individuals, with comparisons across ethnic groups, and to identify novel comorbidities via a phenome-wide association study (PheWAS).

Design, Setting, And Participants: This multicenter cross-sectional population-based cohort study used UK Biobank (UKB) data and fitted logistic regression models for testing associations between excessive scarring and a variety of outcomes, including previously studied comorbidities and 1518 systematically defined disease categories.

View Article and Find Full Text PDF

Measuring the organisation of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fibre segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present , a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT).

View Article and Find Full Text PDF

Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is discussed and brings a link between fibrosis and systemic metabolism.

View Article and Find Full Text PDF

Myofibroblasts, renowned for their contractility and extracellular matrix production, are widely considered the key effector cells for nearly all scars resulting from tissue repair processes, ranging from normal scars to extreme fibrosis. For example, it is often assumed that myofibroblasts underpin the characteristics of keloid scars, which are debilitating pathological skin scars lacking effective treatments because of a poor understanding of the disease mechanisms. Here, we present primary and published transcriptional and histological evidence that myofibroblasts are not consistently present in primary keloid lesions, and when alpha-smooth muscle actin (αSMA)-positive cells are detected, they are not greater in number or expressing more αSMA than in normal or hypertrophic scars.

View Article and Find Full Text PDF

The dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding.

View Article and Find Full Text PDF

Purpose Of Review: Fibroblasts, the major cell population in all connective tissues, are best known for their role in depositing and maintaining the extracellular matrix. Recently, numerous specialised functions have been discovered revealing unpredicted fibroblast heterogeneity. We will discuss this heterogeneity, from its origins in development to alterations in fibrotic disease conditions.

View Article and Find Full Text PDF

Introduction: Given the aging population and the benefits of comprehensive geriatric assessment to this subset of patients, an interprofessional education training approach may be advantageous for learners from a number of different health professions.

Methods: Through intercollegiate collaborations involving seven different colleges, an interprofessional simulation using standardized patients was developed and instituted for learners in medicine, nursing, pharmacy, occupational therapy, physical therapy, dental hygiene, and dietitian programs. Herein, we describe the design of the simulation experience and examine its impact on students, as assessed primarily via written reflective comments provided via exit slips at the conclusion of the activity.

View Article and Find Full Text PDF

Following wound damage to the skin, the scarring spectrum is wide-ranging, from a manageable normal scar through to pathological keloids. The question remains whether these fibrotic lesions represent simply a quantitative extreme, or alternatively, whether they are qualitatively distinct. A three-way comparison of the extracellular matrix (ECM) composition of normal skin, normal scar and keloids was performed using quantitative discovery-based proteomics.

View Article and Find Full Text PDF

Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated.

View Article and Find Full Text PDF

The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through gene expression analysis and immunohistochemistry) of the gastric ganglion in and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by .

View Article and Find Full Text PDF

Food insecurity adversely affects diet quality, physical, mental and social wellbeing and the capacity to act on health advice recommended by primary healthcare providers. In this article, an overview of the neglected issue of food insecurity in urban Aboriginal and Torres Strait Islander communities is provided. Policy and action on food security for urban Aboriginal and Torres Strait Islander people is reviewed, and it is argued that for primary health care to better address food insecurity, an evidence base is needed to understand the experiences of individuals and households and how to work effectively to support food insecure clients.

View Article and Find Full Text PDF

Mesothelial cells lining the peritoneal cavity are strategically positioned to respond to and counter intraperitoneal infections, cancer cells, and other challenges. We have investigated human peritoneal mesothelial cells (HPMCs) for phagocytic activity, expression of surface Major Histocompatibility Complex (MHC) class II and accessory molecules involved in antigen presentation, and the ability to present recall antigens to T cells. Phagocytosis of dextran, latex beads, and Escherichia coli was observed by flow cytometry, and internalization was visualized using confocal and electron microscopy.

View Article and Find Full Text PDF

A skin wound requires several cell lineages to exhibit considerable plasticity as they migrate towards and over the site of damage to contribute to repair. The keratinocytes that re-epithelialize the tissue, the dermal fibroblasts and potentially other mesenchymal stem cell populations that repopulate damaged connective tissue, the immune cells that counter infections, and endothelial cells that re-establish blood supply and facilitate the immune response - all of these cells are 'dynamic' in that they are activated by immediate wound cues, they reprogram to adopt cell behaviours essential for repair including migration, and finally they must resolve. In adult tissues, repair is unique in its requirement for dramatic cell changes and movements otherwise associated only with development and disease.

View Article and Find Full Text PDF

Background: Octopoda utilise their arms for a diverse range of functions, including locomotion, hunting, defence, exploration, reproduction, and grooming. However the natural environment contains numerous threats to the integrity of arms, including predators and prey during capture. Impressively, octopoda are able to close open wounds in an aquatic environment and can fully regenerate arms.

View Article and Find Full Text PDF

From the 10th to 12th of September 2014, in the midst of the Scottish Independence debate, the European Tissue Repair Society descended on Edinburgh for their 24th Annual Meeting. In the beautiful and historic setting of the Royal College of Surgeons of Scotland, Professors David Thomas (Chair), Phil Stephens, Chris Lloyd, and their teams from Cardiff hosted an educational and inspiring program.

View Article and Find Full Text PDF