Publications by authors named "Tanya Reid"

There is a need for effective wound treatments that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying living biological products. Previously, we developed an amnion membrane-derived hydrogel and evaluated its wound healing properties using a mouse wound model. In this study, we used a full thickness porcine skin wound model to evaluate the wound-healing efficacy of the amnion hydrogel and a less-processed amnion product comprising a lyophilized amnion membrane powder.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need.

View Article and Find Full Text PDF

The objective of this study was to determine the extent to which a low level of trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) decreases adiposity and increases browning in overweight mice, its dependence on inflammatory signaling and potential synergistic effects of daily exercise. Young, Sv129 male mice were fed a high-fat diet for 5 weeks to make them fat and glucose intolerant and then switch them to a low-fat diet with or without 0.1% 10,12 CLA, sodium salicylate or exercise for another 7 weeks.

View Article and Find Full Text PDF

Human amnion epithelial cells (hAECs) derived from term or pre-term amnion membranes have attracted attention from researchers and clinicians as a potential source of cells for regenerative medicine. The reason for this interest is evidence that these cells have highly multipotent differentiation ability, low immunogenicity, and anti-inflammatory functions. These properties have prompted researchers to investigate the potential of hAECs to be used to treat a variety of diseases and disorders in pre-clinical animal studies with much success.

View Article and Find Full Text PDF

Recent studies have highlighted the relation between high-fat (HF) diets, the gut microbiota, and inflammation. However, the role of sulfidogenic bacteria in mediating these effects has been explored only recently. Therefore, we tested the hypothesis that an HF diet rich in saturated fat stimulates sulfidogenic bacteria and that these increases correlate with intestinal and systemic inflammatory responses.

View Article and Find Full Text PDF

The objective of this study was to examine the mechanism by which conjugated linoleic acid (CLA) reduces body fat. Young male mice were fed three combinations of fatty acids at three doses (0.06%, 0.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGK) convert diacylglycerol to phosphatidic acid, which has been reported to stimulate calcium release from the endoplasmic reticulum. Based on our published data showing that trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA)-mediated intracellular calcium accumulation is linked to inflammation and insulin resistance, we hypothesized that inhibiting DGKs with R59022 would prevent t10,c12 CLA-mediated inflammatory signaling and insulin resistance in human adipocytes. Consistent with our hypothesis, R59022 attenuated t10,c12 CLA-mediated i) increased gene expression and protein secretion of interleukin (IL)-8, IL-6, and monocyte chemoattractant protein-1 (MCP-1); ii) increased activation of extracellular signal-related kinase (ERK), cJun-NH2-terminal kinase (JNK), and cJun; iii) increased intracellular calcium levels; iv) suppressed mRNA or protein levels of peroxisome proliferator activated receptor γ, adiponectin, and insulin-dependent glucose transporter 4; and v) decreased fatty acid and glucose uptake and triglyceride content.

View Article and Find Full Text PDF

The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA).

View Article and Find Full Text PDF

Background: The efficacy of barrier precautions to prevent influenza transmission is unknown.

Methods: Twenty-eight participants were exposed to monodispersed live attenuated influenza vaccine (LAIV) particles (4.9 μm) in 6 groups: group 1, no precautions; group 2, ocular exposure only; group 3, surgical mask without eye protection; group 4, surgical mask with eye protection; group 5, fit-tested N95 respirator without eye protection; and group 6, fit-tested N95 respirator with eye protection.

View Article and Find Full Text PDF

Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans.

View Article and Find Full Text PDF

Leucine is recognized as a nutrient signal; however, the long-term in vivo consequences of leucine signaling and the role of branched-chain amino acid (BCAA) metabolism in this signaling remain unclear. To investigate these questions, we disrupted the BCATm gene, which encodes the enzyme catalyzing the first step in peripheral BCAA metabolism. BCATm(-/-) mice exhibited elevated plasma BCAAs and decreased adiposity and body weight, despite eating more food, along with increased energy expenditure, remarkable improvements in glucose and insulin tolerance, and protection from diet-induced obesity.

View Article and Find Full Text PDF