The genus is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of . Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats.
View Article and Find Full Text PDFIn late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale.
View Article and Find Full Text PDFBackground: Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge.
View Article and Find Full Text PDFComprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera.
View Article and Find Full Text PDFEndocrine disrupting substances (EDSs) have the potential to disturb sensitive hormone pathways, particularly those involved in development and reproduction. Both fresh and estuarine water bodies receive inputs of EDSs from a variety of sources, including sewage effluent, industrial effluent and agricultural runoff. Based on current literature, freshwater species appear to respond to lower levels of EDSs than estuarine or marine species.
View Article and Find Full Text PDF