Green fluorescent protein (GFP)-like fluorescent proteins have been found in more than 120 species. Although the proteins have little sequence identity, Gly31, 33, and 35 are 87, 100, and 95% conserved across all species, respectively. All GFP-like proteins have a β-barrel structure composed of 11 β-sheets, and the 3 conserved glycines are located in the second β-sheet.
View Article and Find Full Text PDFInhibition of quorum sensing in Pseudomonas aeruginosa is of interest as a possible antivirulence strategy for this pathogenic bacterium. The LasR regulator protein is important in coordinating gene expression in response to quorum sensing signaling molecules. One predominant strategy for LasR inhibition is the development of small-molecule antagonists that mimic the native autoinducer, though the mechanism by which they inactivate LasR is not known.
View Article and Find Full Text PDFThe LasR regulator protein functions at the top of the Pseudomonas aeruginosa quorum-sensing hierarchy and is implicated in promoting bacterial virulence. Of note is recent evidence that this transcription factor may also respond to oxidative stress. Here, all cysteines in LasR were inspected to deduce their redox sensitivity and to probe the connection between stress response and LasR activity using purified LasR and individual LasR domains.
View Article and Find Full Text PDFFlavin cofactors are central to many biochemical transformations and are typically tightly bound as part of a catalytically active flavoenzyme. This work indicates that naturally occurring flavins can act as stand-alone catalysts to promote the oxidation of biosynthetically inspired heterocycles in aqueous buffers. Flavin activity was compared with that of oxidases important in non-ribosomal peptide synthesis, providing a rare direct comparison between the catalytic efficacy of flavins alone and in the context of a full flavoenzyme.
View Article and Find Full Text PDF[reaction: see text] Here we describe a miniature protein (1) that presents the cAMP-dependent protein kinase (PKA) recognition epitope found within the heat-stable Protein Kinase Inhibitor protein (PKI) and a miniature protein conjugate (1-K252a) in which 1 is joined covalently to the high-affinity but nonselective kinase inhibitor K252a. Miniature protein 1 recognizes PKA with an affinity that rivals that of PKI and, in the context of 1-K252a, leads to a dramatic increase in kinase specificity.
View Article and Find Full Text PDFBiochemistry
December 2004
Oxazole and thiazole rings are present in numerous nonribosomal peptide natural products. Oxidase domains are responsible for catalyzing the oxidation of thiazolines and oxazolines to yield fully aromatic heterocycles. Unlike most domains, the placement of oxidase domains within assembly line modules varies.
View Article and Find Full Text PDFThe natural products epothilone and bleomycin are assembled by hybrid polyketide/nonribosomal peptide synthetases. Of note in these assembly lines is the conversion of internal cysteine residues into thiazolines and their subsequent oxidation to heteroaromatic thiazole rings. We have excised the EpoB oxidase domain, EpoB-Ox, proposed to be responsible for thiazoline to thiazole oxidation in epothilone biosynthesis, and expressed it in soluble form in Escherichia coli.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2003
The epothilones are a family of macrolactone natural products from the myxobacterial species Sorangium cellulosum. Similar to taxol, they are of current clinical interest as anticancer agents. Sequence analysis of the epothilone gene cluster allowed the identification of polyketide synthase and nonribosomal peptide synthetase modules involved in catalyzing epothilone biosynthesis.
View Article and Find Full Text PDFEpothilone C is produced by the combined action of one nonribosomal peptide synthetase (NRPS) and nine polyketide synthase (PKS) modules in a multienzyme system. The final step in the biosynthesis is the thioesterase (TE)-catalyzed cyclorelease of epothilone from the EpoF protein. It has been unclear whether isolated PKS TE domains could exhibit macrolactonization activity.
View Article and Find Full Text PDFThe epothilones, a family of macrolactone natural products produced by the myxobacterial species Sorangium cellulosum, are of current clinical interest as antitumor agents. Inspection of the structure of the epothilones suggests a hybrid polyketide/nonribosomal peptide biosynthetic origin, and the recent sequencing of the epothilone biosynthetic gene cluster has validated this proposal. Here we have examined unnatural substrates with the first two enzymes of the biosynthetic pathway, EpoA and EpoB, to investigate the enzymatic construction of alternate heterocyclic structures and the subsequent elongation of these products by the third enzyme of the pathway, EpoC.
View Article and Find Full Text PDF