Safe containment of infectious poliovirus (PV) within Poliovirus-Essential Facilities (PEFs) will require the implementation of reliable PV-inactivation approaches for decontaminating work surfaces. Such approaches should be demonstrated empirically to display adequate efficacy at the use temperature, and the contact times required should be characterized to ensure efficacy. Such efficacy is judged by the ability of the inactivation approach to completely inactivate any PV deposited, with the demonstrated total log reduction in PV titer being as high as empirically achievable.
View Article and Find Full Text PDFThree lipid-enveloped viruses (bovine viral diarrhea virus [BVDV], vaccinia virus, and severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) were evaluated in side-by-side liquid inactivation efficacy studies of low pH (3.0 to 3.1) treatment and of the non-formulated microbicidal actives sodium hypochlorite (100 ppm), ethanol (70%), quaternary ammonium compound BTC 835 (100 ppm), and peracetic acid (100 ppm).
View Article and Find Full Text PDFMitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2.
View Article and Find Full Text PDF