Publications by authors named "Tanya Clements"

An integrated approach that combines reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry, untargeted ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS) and molecular networking (using the Global Natural Products Social molecular network platform) was used to elucidate the metabolic profiles and chemical structures of the secondary metabolites produced by pigmented (P1) and non-pigmented (NP1) () strains. Tandem mass spectrometry-based molecular networking guided the structural elucidation of 18 compounds for the P1 strain (including 6 serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using the MS fragmentation profiles. The serratamolide homologues were comprised of a peptide moiety of two L-serine residues (cyclic or open-ring) linked to two fatty acid chains (lengths of C, C, or C).

View Article and Find Full Text PDF

Background: The antimicrobial resistance of clinical, environmental and control strains of the WHO "Priority 1: Critical group" organisms, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa to various classes of antibiotics, colistin and surfactin (biosurfactant) was determined.

Methods: Acinetobacter baumannii was isolated from environmental samples and antibiotic resistance profiling was performed to classify the test organisms [A. baumannii (n = 6), P.

View Article and Find Full Text PDF

The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing.

View Article and Find Full Text PDF