Publications by authors named "Tanya Bashtannyk-Puhalovich"

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development.

View Article and Find Full Text PDF

The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the regulation of the serine protease, granzyme C, revealing an unusual structural mechanism that regulates its activity.
  • The active-site's typical residues are present, but the formation of the oxyanion hole is incorrect, and a key site for substrate binding is blocked due to a rearrangement involving the residue Phe-191.
  • Mutations can unlock the enzyme's activity, showcasing a previously unseen flexibility in the enzyme’s structure that contributes to its regulatory mechanism, which is significant for understanding protease function beyond traditional modeling methods.
View Article and Find Full Text PDF

Chromatin condensation to heterochromatin is a mechanism essential for widespread suppression of gene transcription, and the means by which a chromatin-associated protein, MENT, induces a terminally differentiated state in cells. MENT, a protease inhibitor of the serpin superfamily, is able to undergo conformational change in order to effect enzyme inhibition. Here, we sought to investigate whether conformational change in MENT is 'fine-tuned' in the presence of a bound ligand in an analogous manner to other serpins, such as antithrombin where such movements are reflected by a change in intrinsic tryptophan fluorescence.

View Article and Find Full Text PDF

Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown.

View Article and Find Full Text PDF

Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome.

View Article and Find Full Text PDF

Maspin is a serpin that acts as a tumor suppressor in a range of human cancers, including tumors of the breast and lung. Maspin is crucial for development, because homozygous loss of the gene is lethal; however, the precise physiological role of the molecule is unclear. To gain insight into the function of human maspin, we have determined its crystal structure in two similar, but non-isomorphous crystal forms, to 2.

View Article and Find Full Text PDF