Infection of Mel in imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables Mel introgression into wild-type mosquito populations.
View Article and Find Full Text PDFThe bacterial endosymbiont Wolbachia is a biocontrol tool that inhibits the ability of the Aedes aegypti mosquito to transmit positive-sense RNA viruses such as dengue and Zika. Growing evidence indicates that when Wolbachia strains wMel or wAlbB are introduced into local mosquito populations, human dengue incidence is reduced. Despite the success of this novel intervention, we still do not fully understand how Wolbachia protects mosquitoes from viral infection.
View Article and Find Full Text PDFThe insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes.
View Article and Find Full Text PDFNoroviruses (NoVs) belong to the Caliciviridae family of viruses and are responsible for causing the majority of gastroenteritis outbreaks worldwide. In the past decade, research on NoV biology has intensified because of the discovery of murine NoV and subsequently the first cell culture system and small animal model for NoV replication and pathogenesis. In this review, we discuss the current literature on NoV biology, focusing particularly on NoV replication and the interaction between NoV and the host immune response.
View Article and Find Full Text PDFAutophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex.
View Article and Find Full Text PDF