Publications by authors named "Tanya A Dewey"

Growing evidence supports the idea that species can diverge in the presence of gene flow. However, most methods of phylogeny estimation do not consider this process, despite the fact that ignoring gene flow is known to bias phylogenetic inference. Furthermore, studies that do consider divergence-with-gene-flow typically do so by estimating rates of gene flow using a isolation-with-migration model (IM), rather than evaluating scenarios of gene flow (such as divergence-with-gene flow or secondary contact) that represent very different types of diversification.

View Article and Find Full Text PDF

Coalescent model-based methods for phylogeny estimation force systematists to confront issues related to the identification of species boundaries. Unlike conventional phylogenetic analysis, where species membership can be assessed qualitatively after the phylogeny is estimated, the phylogenies that are estimated under a coalescent model treat aggregates of individuals as the operational taxonomic units and thus require a priori definition of these sets because the models assume that the alleles in a given lineage are sampled from a single panmictic population. Fortunately, the use of coalescent model-based approaches allows systematists to conduct probabilistic tests of species limits by calculating the probability of competing models of lineage composition.

View Article and Find Full Text PDF