Publications by authors named "Tanwar Himani"

Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo syndrome type A, is a severe, progressive disease that affects the central nervous system (CNS). MPS IIIA is inherited in an autosomal recessive manner and is caused by a deficiency in the lysosomal enzyme sulfamidase, which is required for the degradation of heparan sulfate. The sulfamidase is produced by the N-sulphoglucosamine sulphohydrolase (SGSH) gene.

View Article and Find Full Text PDF

Proteins are the essential building blocks and functional components of a cell. They account for the vital functions of an organism. Proteins interact with each other and form protein interaction networks.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I is a lysosomal genetic disorder caused due to the deficiency of the α-L-iduronidase enzyme (IDUA). Mutations associated with IDUA lead to mild to severe forms of diseases characterized by different clinical features. In the present study, we first performed a comprehensive analysis using various in silico prediction tools to screen and prioritize the missense mutations or nonsynonymous SNPs (nsSNPs) associated with IDUA.

View Article and Find Full Text PDF

The association between depression and methylenetetrahydrofolate reductase (MTHFR) has been continually demonstrated in clinical studies, yet there are sparse resources available to build a relationship between the mutations associated with MTHFR and depression. The common mutations found to be associated with schizophrenia and MTHFR are A222V, E429A, and R594Q. Although abundant research on structural and functional effects caused by A222V mutation is available, very less amount of studies have been done on the other two mutants (E429A and R594Q).

View Article and Find Full Text PDF

Larsen syndrome (LRS) is a rare genetic disease associated with variable manifestations including skeletal malformations, dislocations of the large joints, and notable changes in facial and limb features. Genetic variants in the Filamin B (FLNB) gene are associated with the development of LRS. We searched two literature databases (OMIM and PubMed) and three gene variant databases (HGMD, UniProt, & dbSNP) to capture all the possible variants associated with LRS phenotype, which may have an impact on the FLNB function.

View Article and Find Full Text PDF

Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 () destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.

View Article and Find Full Text PDF

Functional alteration in SMAD proteins leads to dis-regulation of its mechanism results in possibilities of high risk diseases like fibrosis, cancer, juvenile polyposis etc. Studying single nucleotide polymorphism (SNP) in SMAD genes helps understand the malfunction of these proteins. In this study, we focused on deleterious effects of nsSNPs in both structural and functional level using publically available bioinformatics tools.

View Article and Find Full Text PDF