Background: Obesity is a crucial factor that increases the risk of initiating and advancing knee osteoarthritis. However, it remains unclear how obesity directly impacts the biomechanical experience of the lower limb joints, potentially triggering or exacerbating joint degeneration. This study investigated the interactive effects of BMI augmentation on lower limb kinematics, kinetics, and muscle activations during walking.
View Article and Find Full Text PDFKnee osteoarthritis (OA) and obesity are major public health concerns that are closely intertwined. This intimate relationship was documented by considering obesity as the most significant preventable risk factor associated with knee OA. To date, however, the effects of obesity on the knee joint's passive-active structure and cartilage loading have been inconclusive.
View Article and Find Full Text PDFDeep Learning (DL) techniques have recently been used in medical image segmentation and the reconstruction of 3D anatomies of a human body. In this work, we propose a semi-supervised DL (SSDL) approach utilizing a CNN-based 3D U-Net model for femur segmentation from sparsely annotated quantitative computed tomography (QCT) slices. Specifically, QCT slices at the proximal end of the femur forming ball and socket joint with acetabulum were annotated for precise segmentation, where a segmenting binary mask was generated using a 3D U-Net model to segment the femur accurately.
View Article and Find Full Text PDFUnderstanding the mechanics behind knee joint injuries and providing appropriate treatment is crucial for improving physical function, quality of life, and employability. In this study, we used a hybrid molecular dynamics-finite element-musculoskeletal model to determine the level of loads the knee can withstand when landing from different heights (20, 40, 60 cm), including the height at which cartilage damage occurs. The model was driven by kinematics-kinetics data of asymptomatic subjects at the peak loading instance of drop landing.
View Article and Find Full Text PDFBiomech Model Mechanobiol
February 2023
A characteristic feature of arthritic diseases is cartilage extracellular matrix (ECM) degradation, often orchestrated by the overexpression of matrix metalloproteinases (MMPs) and other proteases. The interplay between fibril level degradation and the tissue-level aggregate response to biomechanical loading was explored in this work by a computational multiscale cartilaginous model. We considered the relative abundance of collagenases (MMP-1) and gelatinases (MMP-9) in surrogate models, where the diffusion (spatial distribution) of these enzymes and the subsequent, co-localized fibrillar damage were spatially randomized with Latin Hypercube Sampling.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
May 2022
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) subsequently damaging cartilage and altering biomechanical properties. Collectively, MMPs cleave every ECM macromolecule. However, MMPs present complex substrate interactions and digest differing ECM components making it difficult to understand the individual role each MMP plays in cartilage degradation.
View Article and Find Full Text PDFThe purpose of this study is to understand the effect of essential surgical design parameters on collateral and cruciate ligaments behavior for a Bone-Patellar-Tendon-Bone (BPTB) anterior cruciate ligament reconstruction (ACL-R) surgery. A parametric finite element model of biomechanical experiments depicting the ACL-R surgery associated with a global sensitivity analysis was adopted in this work. The model parameters were six intraoperative variables, two-quadrant coordinates of femoral tunnel placement, femoral tunnel sagittal and coronal angles, graft pretension, and the joint angle at which the BPTB graft is tensioned (fixation angle).
View Article and Find Full Text PDFThe biomechanical function of connective tissues in a knee joint is to stabilize the kinematics-kinetics of the joint by augmenting its stiffness and limiting excessive coupled motion. The connective tissues are characterized by an in vivo reference configuration (in situ strain) that would significantly contribute to the mechanical response of the knee joint. In this work, a novel iterative method for computing the in situ strain at reference configuration was presented.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2019
Knee articular cartilage is characterized by a complex mechanical behavior, posing a challenge to develop an efficient and precise model. We argue that the cartilage damage, in general, can be traced to the fibril level as a plastic deformation, defined as micro-defects. To investigate these micro-defects, we have developed a detailed finite element model of the entire healthy tibiofemoral joint (TF) including a multiscale constitutive model which considers the structural hierarchies of the articular cartilage.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2019
The pathogenesis and pathophysiological underpinnings of cartilage degradation are not well understood. Either mechanically or enzymatically mediated degeneration at the fibril level can lead to acute focal injuries that will, overtime, cause significant cartilage degradation. Understanding the relationship between external loading and the basic molecular structure of cartilage requires establishing a connection between the fibril-level defects and its aggregate effect on cartilage.
View Article and Find Full Text PDFBackground: Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
March 2017
Plant petioles can be considered as hierarchical cellular structures, displaying geometric features defined at multiple length scales. Their macroscopic mechanical properties are the cumulative outcome of structural properties attained at each level of the structural hierarchy. This work appraises the compliance of a rhubarb stalk by determining the stalk's bending and torsional stiffness both computationally and experimentally.
View Article and Find Full Text PDFImage-based finite element analysis (FEA) has been considered an effective computational tool to predict hip fracture risk. The patient specific FEA gives an insight into the inclusive effect of three-dimensional (3D) complex bone geometry, and the distribution of inhomogeneous isotropic material properties in conjunction with loading conditions. The neck region of a femur is primarily the weakest in which fracture is likely to happen, when someone falls.
View Article and Find Full Text PDFPlant petioles and stems are hierarchical cellular structures, displaying geometrical features defined at multiple length scales. One or more of the intermediate hierarchical levels consists of tissues in which the cellular distribution is quasi-random, a factor that affects the elastic properties of the tissues. The current work focuses on the finite element analysis (FEA) of the constituent tissues of the plant Rheum rhabarbarum (rhubarb).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2012
Plant petioles and stems are hierarchical cellular structures, displaying structural features defined at multiple length scales. One or more of the intermediate hierarchical levels consists of tissues, in which the cellular distribution is quasirandom. The current work focuses on the realistic modeling of plant tissue microstructures.
View Article and Find Full Text PDF