Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings.
View Article and Find Full Text PDFMicrocomputed tomography (micro-CT) based finite element models (FEM) are efficient tools to assess bone mechanical properties. Although they have been developed for different animal models, there is still a lack of data for growing rat long bone models. This study aimed at developing and calibrating voxel-based FEMs using micro-CT scans and experimental data.
View Article and Find Full Text PDFBone is a unique living tissue, which responds to the mechanical stimuli regularly imposed on it. Adolescence facilitates a favorable condition for the skeleton that enables the exercise to positively influence bone architecture and overall strength. However, it is still dubious for how long the skeletal benefits gained in adolescence is preserved at adulthood.
View Article and Find Full Text PDFAdvancements in research and care have contributed to increase life expectancy of individuals with cystic fibrosis (CF). With increasing age comes a greater likelihood of developing CF bone disease, a comorbidity characterized by a low bone mass and impaired bone quality, which displays gender differences in severity. However, pathophysiological mechanisms underlying this gender difference have never been thoroughly investigated.
View Article and Find Full Text PDFPhysical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model.
View Article and Find Full Text PDFIn vivo micro-computed tomography (micro-CT) can monitor longitudinal changes in bone mass and microstructure in small rodents but imposing high doses of radiation can damage the bone tissue. However, the effect of weekly micro-CT scanning during the adolescence on bone growth and architecture is still unknown. The right proximal tibia of male Sprague-Dawley rats randomized into three dose groups of 0.
View Article and Find Full Text PDFThe contralateral limb is often used as a control in various clinical, forensic and anthropological studies. However, no studies have been performed to determine if the contra-lateral limb is a suitable control during the bone development period. The aim of this study was to determine the bilateral symmetry of growing rat tibiae in terms of geometric shape, mechanical strength and bone morphological parameters with developmental stages.
View Article and Find Full Text PDFA significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts, and xenografts and thereby serve as implant materials as bone substitutes for bone repair or remodelling. The complex biology behind the nanostructure and microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signalling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric, and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors, and gene therapies.
View Article and Find Full Text PDFThe cervical spine sustains high rate complex loading modes during Motor Vehicle Crashes (MVCs) which may produce severe injuries accompanied with soft and/or hard tissue failure. Although previous numerical and experimental studies have provided insights on the cervical spine behavior under various loading scenarios, its response to complex impact loads and the resulting injury mechanisms are not fully understood. A validated Finite Element (FE) model of the ligamentous cervical C2-C3 Functional Spinal Unit (FSU) was utilized to assess the spinal response to six combined impact loading modes; flexion-extension combined with compression and distraction, and lateral bending and axial rotation combined with distraction.
View Article and Find Full Text PDFThe cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2015
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface.
View Article and Find Full Text PDF