Many groups of stingless insects have independently evolved mimicry of bees to fool would-be predators. To investigate this mimicry, we trained artificial intelligence (AI) algorithms-specifically, computer vision-to classify citizen scientist images of bees, bumble bees, and diverse bee mimics. For detecting bees and bumble bees, our models achieved accuracies of and , respectively.
View Article and Find Full Text PDFWe design a framework based on Mask Region-based Convolutional Neural Network to automatically detect and separately extract anatomical components of mosquitoes-thorax, wings, abdomen and legs from images. Our training dataset consisted of 1500 smartphone images of nine mosquito species trapped in Florida. In the proposed technique, the first step is to detect anatomical components within a mosquito image.
View Article and Find Full Text PDF