This research investigates two-dimensional MHD incompressible boundary layer Hyperbolic Tangent nanofluid flow across a non-linear stretching plate. Similarity transformations are employed to convert the governing non-linear partial differential equations (PDEs) into coupled non-linear ordinary differential equations (ODEs). The MATLAB built-in routine bvp4c has been used for finding the numerical solutions of the dimensionless velocity, temperature, and concentration profiles.
View Article and Find Full Text PDFThis research work describes and investigates Williamson nanofluid flow over an exponentially stretching permeable vertical plate with temperature-dependent thermal conductivity and viscosity. The governing non-linear partial differential equations (PDEs) are metamorphosed into coupled non-linear ordinary differential equations (ODEs) by using similarity transformation. The succeeding equations were numerically solved using MATLAB function bvp4c for various values of parameters.
View Article and Find Full Text PDF