Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients.
View Article and Find Full Text PDFChronic exposure to Ultraviolet B radiation (UV-B) evokes a myriad of toxic signalling events in the irradiated skin. One of such response is ER stress, which is known to exacerbate photodamage responses. Also, recent literature has highlighted the adverse impact of environmental toxicants on mitochondrial dynamics and mitophagy.
View Article and Find Full Text PDFBackground: DNA is the main target for UV-B-irradiation-induced skin photodamage and accounts for 90 % of all the non-melanoma skin cancers.
Purpose: In this study, we explored the mechanistic basis of photoprotective effect of Trigonelline, a naturally occurring alkaloid from the Trigonella foenum-graecum, against UV-B-induced oxidative DNA Damage Response using Primary Human Dermal Fibroblasts (HDFs) and BALB/C mice as models of skin photodamage.
Methods: Primary HDFs were subjected to UV-B exposure (10 mJ/cm) with or without TG for 24 h.
Ultraviolet (UV) exposure to the skin causes photo-damage and acts as the primary etiological agent in photo-carcinogenesis. UV-B exposure induces cellular damage and is the major factor challenging skin homeostasis. Autophagy allows the fundamental adaptation of cells to metabolic and oxidative stress.
View Article and Find Full Text PDFCutaneous photodamage is incited via exposure of ultraviolet-B (UV-B) radiation to skin, characterized by the manifestation of oxidative stress, inflammation, collagen degradation and apoptosis which translates to external aging signs such as wrinkle formation and leathery skin appearance. Meanwhile, it increases cellular susceptibility to photocarcinogenesis. Several studies have accumulated evidence regarding the usage of natural agents in reversing the clinical signs of photoaging as well as preventing photo-toxicity at molecular level.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2020
It has been widely reported that ultraviolet-B (UV-B) radiation is the main extrinsic etiological agent that causes skin photodamage. UV-B exposure mediated photodamage (photo-aging/photo-carcinogenesis) to human skin is caused due to several physiological events at tissue, cellular and molecular levels that lead to impairment of skin function and integrity. In the present study, we investigated the protective role of Trigonelline (TG) against UV-B induced photo-damage in Human Dermal Fibroblasts (Hs68 cells) and Balb/C mice.
View Article and Find Full Text PDFBackground/aims: Excessive exposure to UV radiation negatively affects the human skin, characterized by photo-damage (premature aging & carcinogenesis). UV-B radiation causes about 90% of non-melanoma skin cancers by damaging de-oxy ribonucleic acids (DNA). We have previously reported that UV-B radiation induces skin photodamage through oxidative & Endoplasmic Reticulum (ER) stresses and Glycyrrhizic acid (GA), a natural triterpene, protects skin cells against such stresses.
View Article and Find Full Text PDF