Background: Although the genome of Saccharomyces cerevisiae (S. cerevisiae) was the first one of a eukaryote organism that was fully sequenced (in 1996), a complete understanding of the potential of encoded biomolecular mechanisms has not yet been achieved. Here, we wish to quantify how far the goal of a full list of S.
View Article and Find Full Text PDFBackground: Although Escherichia coli (E. coli) is the most studied prokaryote organism in the history of life sciences, many molecular mechanisms and gene functions encoded in its genome remain to be discovered. This work aims at quantifying the illumination of the E.
View Article and Find Full Text PDFBackground: Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sciences. Initially thought just to be commensal bacteria, E.
View Article and Find Full Text PDFThe paradigm shift associated with the introduction of the pan-genome concept has drawn the attention from singular reference genomes toward the actual sequence diversity within organism populations, strain collections, clades, etc. A single genome is no longer sufficient to describe bacteria of interest, but instead, the genomic repertoire of all existing strains is the key to the metabolic, evolutionary, or pathogenic potential of a species. The classification of orthologous genes derived from a collection of taxonomically related genome sequences is central to bacterial pan-genome computational analysis.
View Article and Find Full Text PDFGastric cancer cases are often diagnosed at an advanced stage with poor prognosis. Platinum-based chemotherapy has been internationally accepted as first-line therapy for inoperable or metastatic gastric cancer. To achieve greater benefits, selection of patients eligible for this treatment is critical.
View Article and Find Full Text PDFWhether due to simplicity or hypocrisy, the question of access to patient data for biomedical research is widely seen in the public discourse only from the angle of patient privacy. At the same time, the desire to live and to live without disability is of much higher value to the patients. This goal can only be achieved by extracting research insight from patient data in addition to working on model organisms, something that is well understood by many patients.
View Article and Find Full Text PDFBackground: Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e.
View Article and Find Full Text PDFThe Singapore Integrative Omics Study provides valuable insights on establishing population reference measurement in 364 Chinese, Malay, and Indian individuals. These measurements include > 2.5 millions genetic variants, 21,649 transcripts expression, 282 lipid species quantification, and 284 clinical, lifestyle, and dietary variables.
View Article and Find Full Text PDFNext-generation genotyping microarrays have been designed with insights from large-scale sequencing of exomes and whole genomes. The exome genotyping arrays promise to query the functional regions of the human genome at a fraction of the sequencing cost, thus allowing large number of samples to be genotyped. However, two pertinent questions exist: firstly, how representative is the content of the exome chip for populations not involved in the design of the chip; secondly, can the content of the exome chip be imputed with the reference data from the 1000 Genomes Project (1KGP).
View Article and Find Full Text PDFThe major histocompatibility complex (MHC) containing the classical human leukocyte antigen (HLA) Class I and Class II genes is among the most polymorphic and diverse regions in the human genome. Despite the clinical importance of identifying the HLA types, very few databases jointly characterize densely genotyped single nucleotide polymorphisms (SNPs) and HLA alleles in the same samples. To date, the HapMap presents the only public resource that provides a SNP reference panel for predicting HLA alleles, constructed with four collections of individuals of north-western European, northern Han Chinese, cosmopolitan Japanese and Yoruba Nigerian ancestry.
View Article and Find Full Text PDFMotivation: Next-generation genotyping microarrays have been designed with insights from 1000 Genomes Project and whole-exome sequencing studies. These arrays additionally include variants that are typically present at lower frequencies. Determining the genotypes of these variants from hybridization intensities is challenging because there is less support to locate the presence of the minor alleles when the allele counts are low.
View Article and Find Full Text PDFNext-generation sequencing (NGS) studies in cancer are limited by the amount, quality and purity of tissue samples. In this situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells represents a technical challenge to their use in NGS studies.
View Article and Find Full Text PDFThe Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project.
View Article and Find Full Text PDFRemote homology detection refers to the detection of structure homology in evolutionarily related proteins with low sequence similarity. Supervised learning algorithms such as support vector machine (SVM) are currently the most accurate methods. In most of these SVM-based methods, efforts have been dedicated to developing new kernels to better use the pairwise alignment scores or sequence profiles.
View Article and Find Full Text PDFLike other cancers, aberrant gene regulation features significantly in hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) were recently found to regulate gene expression at the post-transcriptional/translational levels. The expression profiles of 157 miRNAs were examined in 19 HCC patients, and 19 up-regulated and 3 down-regulated miRNAs were found to be associated with HCC.
View Article and Find Full Text PDFIdentifying a protein's subcellular localization is an important step to understand its function. However, the involved experimental work is usually laborious, time consuming and costly. Computational prediction hence becomes valuable to reduce the inefficiency.
View Article and Find Full Text PDFP53 is probably the most important tumor suppressor known. Over the years, information about this gene has increased dramatically. We have built a comprehensive knowledgebase of p53, which aims to facilitate wet-lab biologists to formulate their experiments and new-comers to learn whatever they need about the gene and bioinformaticians to make new discoveries through data analysis.
View Article and Find Full Text PDFMembers of the ATP-binding cassette (ABC) superfamily of transporters have been implicated as major players in drug response. Single nucleotide polymorphisms (SNPs) in the ABC transporter genes may account for variation in drug response between individuals. Given the abundance of SNPs within the human genome, identification of functionally important SNPs is difficult.
View Article and Find Full Text PDFBackground: The advent of genotype data from large-scale efforts that catalog the genetic variants of different populations have given rise to new avenues for multifactorial disease association studies. Recent work shows that genotype data from the International HapMap Project have a high degree of transferability to the wider population. This implies that the design of genotyping studies on local populations may be facilitated through inferences drawn from information contained in HapMap populations.
View Article and Find Full Text PDFBackground: The recent advancement in human genome sequencing and genotyping has revealed millions of single nucleotide polymorphisms (SNP) which determine the variation among human beings. One of the particular important projects is The International HapMap Project which provides the catalogue of human genetic variation for disease association studies. In this paper, we analyzed the genotype data in HapMap project by using National Institute of Environmental Health Sciences Environmental Genome Project (NIEHS EGP) SNPs.
View Article and Find Full Text PDF