Ethyl cellulose (EC), a degradable cellulose derivative, served as a primary component in membranes fabricated by electrospinning for in vitro drug delivery applications. An effective strategy to enhance drug release was incorporating high-surface-area nanomaterials into polymeric drug carriers, which facilitated drug attachment to both the polymer matrix and additive surfaces, promoting release. MXene (TiCT) demonstrated promising potential in improving tensile mechanical properties, antibacterial activity, and curcumin (Cur) release performance of EC membrane.
View Article and Find Full Text PDFWound infections can lead to life-threatening infection and death. Antibacterial materials from biopolymers in the form of films are a promising strategy for wound dressings. Carboxylate-dialdehyde cellulose (CDAC) is a proper candidate for use as an antibacterial material due to its biocompatibility, nontoxicity, and antibacterial property.
View Article and Find Full Text PDFDissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated L.
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
Three-dimensional (3D) printing can be used to fabricate custom microneedle (MN) patches instead of the conventional method. In this work, 3D-printed MN patches were utilized to fabricate a MN mold, and the mold was used to prepare dissolving MNs for topical lidocaine HCl (L) delivery through the skin. Topical creams usually take 1-2 h to induce an anesthetic effect, so the delivery of lidocaine HCl from dissolving MNs can allow for a therapeutic effect to be reached faster than with a topical cream.
View Article and Find Full Text PDFMXenes, synthesized from their precursor MAX phases, have been extensively researched as additives to enhance the drug delivery performance of polymer matrices, whereas there is a limited number of previous reports on the use of MAX phases themselves for such applications. The use of MAX phases can exclude the complicated synthesis procedure and lessen resultant production and environmental costs required to convert MAX phases to MXenes. Herein, electrospun membranes of poly(lactic acid) (PLA) and a MAX phase (TiAlC) have been fabricated for curcumin delivery.
View Article and Find Full Text PDFPolymers (Basel)
August 2023
The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and physicochemical properties of all hydrogel formulations were characterized, and the results revealed that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum swelling degree.
View Article and Find Full Text PDFWater hyacinth is an aquatic weed species that grows rapidly. In particular, it causes negative impacts on the aquatic environment and ecological system. However, water hyacinth is rich in cellulose, which is a biodegradable material.
View Article and Find Full Text PDFComposite bacterial cellulose (BC) based hydrogel with alginate (A) or pectin (P) or alginate and pectin was fabricated via a physical crosslinking technique using calcium chloride (CaCl) solution and incorporated with polyhexamethylene biguanide (PHMB) as an effective antimicrobial drug by immersion method. After that, the physicochemical properties of all hydrogel formulations were characterized. The result showed that the formulations with PHMB performed better physicochemical properties than the hydrogel without PHMB.
View Article and Find Full Text PDFPolymeric nanoparticles are one method to modify the drug release of small hydrophilic molecules. In this study, clindamycin HCl was used as a model drug loaded in carboxymethyl chitosan nanoparticles cross-linked with Ca2+ ions (CMCS-Ca2+). The ultrasonication with experimental design was used to produce CMCS-Ca2+ nanoparticles loading clindamycin HCl.
View Article and Find Full Text PDFBiocomposite hydrogels based on nanocellulose fibers (CNFs), low methoxy pectin (LMP), and sodium alginate (SA) were fabricated via the chemical crosslinking technique. The selected CNFs-based hydrogels were loaded with clindamycin hydrochloride (CM), an effective antibiotic as a model drug. The properties of the selected CNFs-based hydrogels loaded CM were characterized.
View Article and Find Full Text PDFIn recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (), rambutan (), and mango () were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water-ethanol (40:60%). All extracts contained phenolics and flavonoids.
View Article and Find Full Text PDFIn this study, we aimed to develop a low-mexthoxyl pectin (LMP) from mango peel pectin through a de-esterification method for use as a film forming agent. The prepared de-esterified pectin (DP) was compared to commercial LMP (cLMP) which possessed a 29% degree of esterification (DE). Mango peel pectin was extracted from ripe Nam Dokmai mango peel using the microwave-assisted extraction method.
View Article and Find Full Text PDFThis study aims to develop orange oil loaded in thin mango peel pectin films and evaluate their antibacterial activity against The mango peel pectin was obtained from the extraction of ripe Nam Dokmai mango peel by the microwave-assisted method. The thin films were formulated using commercial low methoxy pectin (P) and mango pectin (M) at a ratio of 1:2 with and without glycerol as a plasticizer. Orange oil was loaded into the films at 3% .
View Article and Find Full Text PDFThe purpose of this study was to prepare orange oil microemulsion (ME) and to investigate the antimicrobial activity of film containing orange oil ME. First, surfactants and co-surfactants were screened on their efficiency to form ME using pseudo-ternary phase diagrams. The influences of surfactant and co-surfactant mass ratios were studied and optimized ME-loaded-films were prepared.
View Article and Find Full Text PDFThis study developed the interests of low-methoxyl pectin (LMP) together with plasticizers for the preparation of elastic thin films. The effect of different plasticizer types (glycerol: Gly; sorbitol: Sor; propylene glycol: PG; and polyethylene glycol 300: PEG 300) and concentrations (20⁻40% ) on mechanical and thermal properties of LMP films as well as on in vitro release of indomethacin were evaluated. Without any plasticizer, a brittle LMP film with low tensile strength and % elongation at break was obtained.
View Article and Find Full Text PDF