Publications by authors named "Tanooj Shah"

The atomic-scale response of inhomogeneous fluids at interfaces and surrounding solute particles plays a critical role in governing chemical, electrochemical, and biological processes. Classical molecular dynamics simulations have been applied extensively to simulate the response of fluids to inhomogeneities directly, but are limited by the accuracy of the underlying interatomic potentials. Here, we use neural network potentials (NNPs) trained to ab initio simulations to accurately predict the inhomogeneous responses of two distinct fluids: liquid water and molten NaCl.

View Article and Find Full Text PDF

Precise prediction of phase diagrams in molecular dynamics simulations is challenging due to the simultaneous need for long time and large length scales and accurate interatomic potentials. We show that thermodynamic integration from low-cost force fields to neural network potentials trained using density-functional theory (DFT) enables rapid first-principles prediction of the solid-liquid phase boundary in the model salt NaCl. We use this technique to compare the accuracy of several DFT exchange-correlation functionals for predicting the NaCl phase boundary and find that the inclusion of dispersion interactions is critical to obtain good agreement with experiment.

View Article and Find Full Text PDF