Several reports assume that myocardial necroptotic cell death is induced during the development of chronic heart failure. Although it is well accepted that angiotensin II induces apoptotic cell death of cardiac myocytes, the involvement of angiotensin II in the induction of myocardial necroptosis during the development of heart failure is still unknown. Therefore, we examined the role of angiotensin II in myocardial necroptosis using rat failing hearts following myocardial infarction and cultured cardiomyocytes.
View Article and Find Full Text PDFIntroduction: There is still no effective treatment for heart failure with preserved left ventricular ejection fraction (HFpEF), and therapies to improve prognosis are urgently needed. Clinical studies in patients with HFpEF have shown that statins and HMG-CoA reductase inhibitors may reduce their mortality rate. However, the mechanisms underlying the effects of statins on HFpEF remain unknown.
View Article and Find Full Text PDFThe NLR family pyrin domain containing 3 (NLRP3) inflammasome matures interleukin (IL)-1β and induces inflammation. The molecular chaperone heat shock protein 90 (Hsp90) is known to regulate the formation of the NLRP3 inflammasome. However, the pathophysiological role of Hsp90 in the activation of the NLRP3 inflammasome in the failing heart is unclear.
View Article and Find Full Text PDFHsp90 is a molecular chaperone that contributes to the activation and stabilization of client proteins. In our previous studies, we found that inhibition of Hsp90 delayed cardiac remodeling during the development of chronic heart failure in animal models. Simvastatin, an inhibitor of HMG-CoA reductase, has been shown to inhibit Hsp90.
View Article and Find Full Text PDFIn the previous study, we showed that an Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), attenuates hypertrophic remodeling of cardiomyocytes during the development of heart failure. In this present study, we investigated the effects of 17-AAG on cardiac fibrosis during the development of heart failure. We used pressure-loaded cardiac hypertrophic mice prepared by constriction of the transverse aorta (TAC), which induces significant cardiac fibrosis without scar tissue.
View Article and Find Full Text PDFAim: This study aimed to identify the resources recognized as helpful by children of parents with a mental illness (COPMI) to cope with the difficulties they experienced in their lives.
Methods: A qualitative descriptive design was employed. Semi-structured interviews were conducted with 10 adults who experienced parental mental illness in their childhood.
Necroptosis is a programmed form of necrotic cell death. Necroptosis is regulated by the necroptosis-regulating proteins including receptor-interacting protein (RIP) 1, RIP3, and mixed lineage kinase domain-like (MLKL), the activities of which are modulated by the molecular chaperone heat-shock protein (Hsp) 90. Presently, to clarify the relationship between Hsp90 and necroptotic pathway proteins, RIP1, RIP3, and MLKL in the development of heart failure, we examined the effects of Hsp90 inhibitor treatment on the RIP1-RIP3-MLKL pathway in mice following transverse aortic constriction (TAC).
View Article and Find Full Text PDFThe cardiosphere-derived cell (CDC) is one of the candidate cells used for cardiac regenerative therapy. Cardiospheres are mixture of cells including c-Kit cells, stem cell antigen (Sca)-1 cells, and other types of cardiac progenitor cells. In this study, we compared the effect of transplantation of isolated Sca-1 cells and c-Kit cells with that of the crude CDCs (CrCDCs).
View Article and Find Full Text PDFProtein quality control (PQC) in the heart plays an important role to maintain cellular protein homeostasis. Impairment of PQC may cause the development of heart failure. It is well known that histone deacetylase 6 (HDAC6) is an essential enzyme for regulating the cellular PQC response.
View Article and Find Full Text PDFThe Raf/MAPK/ERK kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is activated in cardiac hypertrophy after a myocardial infarction. Although heat-shock protein 90 (Hsp90) may regulate the Raf/Mek/Erk signal pathway, the role of Hsp90 in pathophysiological cardiac hypertrophy remains unclear. In this study, we examined the role of Hsp90 in this pathway in cardiac hypertrophy under in vivo and in vitro experimental conditions.
View Article and Find Full Text PDFBackground: It is postulated that impaired mitochondrial energy-producing ability may lead to the development of chronic heart failure following an acute myocardial infarction. In this study, the effects of transplantation of cardiosphere-derived cells (CDCs) into the viable cardiac tissue after a myocardial infarction on the cardiac mitochondrial oxygen consumption rate (OCR) were examined.
Methods: CDCs isolated from adult rat cardiac tissue fragments were cultured.
Glycogen synthase kinase (GSK)-3β, which is abundantly expressed in the central nervous system, regulates various cellular processes including gene expression, cell proliferation, and differentiation. However, involvement of GSK-3β in cerebral ischemia-induced endogenous neurogenesis is not yet fully understood. Appropriate strategies to prevent ischemic cell damage and subsequent severe sequelae are needed.
View Article and Find Full Text PDFThis study investigated the effects of an adenosine receptor agonist, 2-octynyladenosine (YT-146), on mitochondrial function in ischemic and ischemic/reperfused hearts. Isolated rat hearts were perfused in the Langendorff manner with a constant flow rate, and exposed to 30 min of ischemia followed by 60 min of reperfusion. Preischemic treatment with YT-146 significantly improved postischemic recovery of left ventricular developed pressure.
View Article and Find Full Text PDFLoss of cardiac myocytes plays a critical role in the pathogenesis of cardiovascular disorders. A decrease in the number of cardiac myocytes in cardiac diseases results in sustained, irreversible contractile failure of myocardium. Therefore prevention of cardiac cell death is a potential therapeutic strategy for various heart diseases.
View Article and Find Full Text PDFPhospholipase C (PLC) is a key enzyme in phosphoinositide turnover. Among 13 PLC isozymes, PLCδ1 and PLCδ3 share high sequence homology and similar tissue distribution, and are expected to have functional redundancy in many tissues. We previously reported that the simultaneous loss of PLCδ1 and PLCδ3 caused embryonic lethality because of excessive apoptosis and impaired vascularization of the placenta.
View Article and Find Full Text PDFThe mechanisms underlying mitochondrial impairment in the failing heart are not yet clear. In a previous study, we found that the levels of small heat shock proteins (HSP) such as mitochondrial HSPB1 and HSPB8 in the failing heart following myocardial infarction were decreased. In the present study, to verify the hypothesis that mitochondrial dysfunction in the failing heart is associated with alterations in mitochondrial small heat shock proteins, we examined the effects of geranylgeranylacetone, a heat shock protein inducer, on the cardiac mitochondrial function after myocardial infarction.
View Article and Find Full Text PDFIt is generally accepted that an increase in the myocardial level of heat-shock protein 72 (HSP72) protects viable cardiac tissue against myocardial infarction (MI)-induced stress. However, the induction of HSP72 after exposure to heat shock (HS) is blunted in the failing rat heart following MI. The mechanisms underlying this impairment in the HSP72 induction ability of the failing heart are not yet clearly defined.
View Article and Find Full Text PDFIt is supposed that an increase in the level of heat shock protein 72 (HSP72) in the failing heart would be beneficial for reducing the myocardial damage. However, the induction of HSP72 after an exposure to heat shock is blunted in the failing rat heart following myocardial infarction. In this study, to clarify the possible mechanisms underlying this reduction in the ability for HSP72 induction in the failing heart, the possible involvement of heat-shock factor-1 (HSF1), an HSP transcription factor, in this reduction was examined.
View Article and Find Full Text PDFAlthough functional disruption of the cerebrovasculature, which is called the "neurovascular unit (NVU)", may lead to amplification of ischemia-induced injury, changes in the gap junctional proteins within the NVU and their pathophysiological roles after brain injury remain controversial. We previously demonstrated that the intravenous injection of neural progenitor cells (NPCs) have therapeutic potential for improving the spatial learning dysfunction and depression-like behaviors observed after cerebral ischemia. In this study, we investigated whether severe cerebral ischemia would alter the expression of gap junctional proteins in isolated brain capillaries and examined the effect of intravenous injection of NPCs on the levels of these proteins.
View Article and Find Full Text PDFThe mechanisms underlying mitochondrial impairment in the failing heart are not yet clearly defined. In the present study, we examined the involvement of changes in small heat shock proteins (HSPs) such as HSPB1, HSPB5 and HSPB8 in mitochondrial dysfunction of the failing heart. Hemodynamic parameters of rats with myocardial infarction at the 2nd and 8th weeks (2W- and 8W-) after coronary artery ligation (CAL) were measured.
View Article and Find Full Text PDFEarlier we demonstrated that the injection of neural progenitor cells (NPCs) has therapeutic potential for the improvement of learning dysfunction after cerebral ischemia. However, it remained to be clarified how transplantation of NPCs can improve ischemia-induced dysfunction. In this study, we examined whether intravenous injection of NPCs after cerebral ischemia could enhance angiogenesis by affecting the expression of angiogenic factors.
View Article and Find Full Text PDFA K141N missense mutation in heat shock protein (HSP) B8, which belongs to the small HSP family, causes distal hereditary motor neuropathy, which is characterized by the formation of inclusion bodies in cells. Although the HSPB8 gene causes hereditary motor neuropathy, obvious expression of HSPB8 is also observed in other tissues, such as the heart. The effects of a single mutation in HSPB8 upon the heart were analyzed using rat neonatal cardiomyocytes.
View Article and Find Full Text PDFAcyl-CoA thioesterases (Acots) are enzymes that catalyze the hydrolysis of fatty acyl-CoAs to free fatty acids and coenzyme A, and have the potential to regulate the intracellular levels of these molecules. In this study, we show that a cytosolic isoform, Acot1, is expressed and distributed in immature adipocytes located in the perivascular region of the white adipose tissue (WAT) of rats. Immunoblot analyses detected Acot1 in all of the WATs examined, while immunohistochemistry revealed positively stained layered structures surrounding the adventitia of blood vessels in the subcutaneous WAT.
View Article and Find Full Text PDF