Publications by authors named "Tanom Lomas"

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a cause of worldwide Coronavirus 2019 (COVID-19) disease pandemic. It is thus important to develop ultra-sensitive, rapid and easy-to-use methods for the identification of COVID-19 infected patients. Herein, an alternative electrochemical immunosensor based on poly(pyrrolepropionic acid) (pPPA) modified graphene screen-printed electrode (GSPE) was proposed for rapid COVID-19 detection.

View Article and Find Full Text PDF

In this work, we report the conversion of carbon dioxide (CO) gas into graphene on copper foil by using a thermal chemical vapor deposition (CVD) method assisted by hydrogen (H) plasma pre-treatment. The synthesized graphene has been characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show the controllable number of layers (two to six layers) of high-quality graphene by adjusting H plasma pre-treatment powers (100-400 W).

View Article and Find Full Text PDF

α-MnO nanofibers combined with nitrogen and sulfur co-doped reduced graphene oxide (α-MnO/N&S-rGO) were prepared through simple hydrothermal and ball milling processes. Structural characterization results by X-ray diffraction, X-ray photoemission spectroscopy, electron microscopy and Raman spectroscopy demonstrated that α-MnO nanofibers with the average diameter of ~40 nm were well dispersed on N&S-rGO nanoflakes. The synthesized material was incorporated into supercapacitor (SC) electrodes and assembled with the quasi-solid-state electrolyte comprising N,N-Diethyl-N-methyl-N-(2-methoxy-ethyl)ammonium bis (trifluoromethyl-sulfonyl)amide [DEME][TFSA]/polyvinylidene fluoride-hexafluoropropylene (PVDF-co-HFP) to produce coin-cell SCs.

View Article and Find Full Text PDF

In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks.

View Article and Find Full Text PDF

In this study, a portable turbidimetric end-point detection method was devised and tested for the detection of Taura syndrome virus (TSV) using spectroscopic measurement of a loop-mediated isothermal amplification (LAMP) by-product: magnesium pyrophosphate (Mg(2)P(2)O(7)). The device incorporated a heating block that maintained an optimal temperature of 63°C for the duration of the RT-LAMP reaction. Turbidity of the RT-LAMP by-product was measured when light from a light-emitting diode (LED) passed through the tube to reach a light dependent resistance (LDR) detector.

View Article and Find Full Text PDF

In conventional DNA microarray hybridization, delivery of target cDNAs to surface-bounded probes depends solely on diffusion, which is notoriously slow, and thus typically requires 6-20 h to complete. In this study, piezoelectric microagitation through a liquid coupling medium is employed to enhance DNA hybridization efficiency and the results are compared with the standard static hybridization method. DNA hybridization was performed in a sealed aluminium chamber containing DNA microarray glass chip, coupling medium and piezoelectric transducers.

View Article and Find Full Text PDF

A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a beta-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate.

View Article and Find Full Text PDF

An immunoassay performed on a portable microfluidic device was evaluated for the determination of urinary albumin. An increase in absorbance at 500 nm resulting from immunoagglutination was monitored directly on the poly(dimethylsiloxane) (PDMS) microchip using a portable miniature fibre-optic spectrometer. A calibration curve was linear up to 10 mg L(-1) (r(2) = 0.

View Article and Find Full Text PDF