Publications by authors named "Tanner Jensen"

Article Synopsis
  • * The 1000 Genomes Project and Oxford Nanopore Technologies are working together to produce LRS data from at least 800 samples to enhance the identification of genetic variations and better understand human genetic diversity.
  • * Initial analysis of 100 samples shows high accuracy in detecting genetic variants, including structural variants that disrupt gene function, and provides valuable data for the clinical genetics community to advance research on pathogenic variations.
View Article and Find Full Text PDF
Article Synopsis
  • - CSF1R-related disorder (CSF1R-RD) is a genetic neurodegenerative disease primarily affecting white matter due to mutations in the CSF1R gene, leading to a decline in brain function, particularly in an elderly man studied who showed symptoms of progressive dementia.
  • - Brain autopsy revealed features characteristic of adult-onset leukoencephalopathy (ALSP) associated with CSF1R-RD, and a novel genetic deletion in CSF1R was uncovered, which standard genetic tests hadn't detected.
  • - Further genomic analysis indicated two distinct states of microglia associated with the disease and showed that oligodendrocytes, critical for myelin formation, exhibited stress responses and failed to mature properly
View Article and Find Full Text PDF

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium.

View Article and Find Full Text PDF

Purpose: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings.

View Article and Find Full Text PDF

Rare structural variants (SVs) - insertions, deletions, and complex rearrangements - can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.

View Article and Find Full Text PDF
Article Synopsis
  • * The 1000 Genomes Project ONT Sequencing Consortium is working to generate LRS data from at least 800 samples to better understand human genetic variation and improve variant detection.
  • * Initial data from the first 100 samples show high accuracy in identifying structural variants and methylation signatures, creating a useful public resource for finding disease-related genetic changes.
View Article and Find Full Text PDF

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Knockdown of ε4 may provide a therapeutic strategy for AD, but the effect of APOE loss of function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of controls and patients with AD and identified seven heterozygote carriers of APOE LoF variants.

View Article and Find Full Text PDF
Article Synopsis
  • Transcriptomics is crucial for understanding the effects of genetic variants and diagnosing diseases, but the choice of genome build significantly affects these analyses.
  • In a study involving 386 rare disease and control samples, researchers found 2,800 genes showed different expression levels depending on whether they used hg19, hg38, or CHM13 genome builds.
  • The findings highlight the necessity of cross-referencing transcriptomic analyses with genome build data to improve diagnostic accuracy and robustness.
View Article and Find Full Text PDF

Background And Objectives: Single nucleotide variants near associate with risk of frontotemporal lobar dementia with TDP-43 inclusions (FTLD-TDP) and Alzheimer's disease (AD) in genome-wide association studies (GWAS), but the causal variant at this locus remains unclear. Here we asked whether a novel structural variant on is the causal variant.

Methods: An exploratory analysis identified structural variants on neurodegeneration-related genes.

View Article and Find Full Text PDF

Reading is an essential skill that requires focused attention. However, much reading is done in non-optimal environments. These days, reading is often done on digital devices or with a digital device nearby.

View Article and Find Full Text PDF

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification.

View Article and Find Full Text PDF

Background: Microglia, the resident immune cells of the brain, play a critical role in numerous diseases, but are a minority cell type and difficult to genetically manipulate in vivo with viral vectors and other approaches. Primary cultures allow a more controlled setting to investigate these cells, but morphological and transcriptional changes upon removal from their normal brain environment raise many caveats from in vitro studies.

Methods: To investigate whether cultured microglia recapitulate in vivo microglial signatures, we used single-cell RNA sequencing (scRNAseq) to compare microglia freshly isolated from the brain to primary microglial cultures.

View Article and Find Full Text PDF

The choroid plexus, a tissue responsible for producing cerebrospinal fluid, is found predominantly in the lateral and fourth ventricles of the brain. This highly vascularized and ciliated tissue is made up of specialized epithelial cells and capillary networks surrounded by connective tissue. Given the complex structure of the choroid plexus, this can potentially result in contamination during routine tissue dissection.

View Article and Find Full Text PDF

The molecular chaperone Clusterin (CLU) impacts the amyloid pathway in Alzheimer's disease (AD) but its role in tau pathology is unknown. We observed CLU co-localization with tau aggregates in AD and primary tauopathies and CLU levels were upregulated in response to tau accumulation. To further elucidate the effect of CLU on tau pathology, we utilized a gene delivery approach in CLU knock-out (CLU KO) mice to drive expression of tau bearing the P301L mutation.

View Article and Find Full Text PDF

Bacterial antibiotic resistance is becoming a significant health threat, and rapid identification of antibiotic-resistant bacteria is essential to save lives and reduce the spread of antibiotic resistance. This paper analyzes the ability of machine learning algorithms (MLAs) to process data from a novel spectroscopic diagnostic device to identify antibiotic-resistant genes and bacterial species by comparison to available bacterial DNA sequences. Simulation results show that the algorithms attain from 92% accuracy (for genes) up to 99% accuracy (for species).

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the existence of "dark" and "camouflaged" regions in the human genome that standard short-read sequencing cannot effectively analyze, impacting the identification of disease-related mutations.
  • Researchers discovered 36,794 dark regions across important gene pathways, with varying degrees of darkness, and employed linked-read and long-read sequencing technologies to significantly reduce the number of unresolved regions.
  • The study suggests that long-read sequencing can uncover significant genetic information, like a rare mutation in a gene associated with Alzheimer's, underscoring the need for further investigation in larger samples to understand its implications.
View Article and Find Full Text PDF